
��� �������
	��
�	�����	��
��������	�������� ���� ��� �"!

#%$'&)(+*,$.-�/10324 -65879-;:=<?> 4A@CBED6F $?>A-G$ 4A@.H�I -KJML8NO:

P QSR�TUQSVWQYX[Z]\^Z%_�`[X `[abVU\cTd_fe�VU_)Xhg

i `[j R�ekZlQmTonpg6QSXhQmTq\^ZlQSr R�\^ZoZlQmTdX�V

s�t;uAuAvdwWxoy]x�t;zY{

|~}���������������}��=�����~�����������������������~�Y�o�������~�
sfzY��x�z^w�t�{ �Svdw �vd¡�¢�{�t;uA¡�¢�vd{ £ t;uAuAvd{�uA¡�¢¤yS¥ox�vd{

¦ �����¨§©���«ª�����ª¬���®­°¯�±�²´³´²�µ�²�¶¸·µ�¹�º¸»=¼�½=¾K¿�³�±ÁÀ«Â'Ã�±ÅÄoÃ~À«Â�¯'Ã�¯

Æ �~ª�����}=}�����Ç
ÈWÉ�ÊÁËÍÌ�ÎÐÏ�ÑMËÒÎ�Ó�ËAÔAÕÒÖ×ÊØÉÚÙmÔÚÛ�ÊØÜ¨Û�ÙÝÓ
Þ Ë%ÈWÉ�Ê�ßÒËÍÌ�à%Ó�Ï3Ü�ËCÎ�Ê�áEâÁËÍÌÁã�ÕäÛÁå¬Ë?Î�Ó3ËpæäÏCçGåÚÙ�ÉèàqÜ�Õ3â´Ñ¸éäÓ¸Õ+Ü

�A�������~���~�����¸ªÅê�ë�� Ç
ãìËØí,Ëîã"Ë8ã�Õ+ÉÚÕ+ïKÊ�ð�Õ+åEñ×â�òYÛ�åÚÕ+âOÙ

ó ����|Ýô+õW��|��~�%ö×���Å÷�ø�ø�ù

ú¨ûÝüKýKþ�þ;ÿ����'ÿ���� ÿ��
	äþ���
¨ÿ����������ý��
������������� �"!$#&%��(')+*�!�, *.-0/�*�-21+)3-54�6�*87�9:%<;"!=)+*.-�!$*>)�?A@=)B)3C�?�D D�EFEFE
G"H�!�� �I' �"!=# G 4�J G 4=)K%<LNMPOQ��� 9 R�7 9�7

Abstract

ClothModelling is contained inmanyapplications: in e-commerce
but in films too. A major aspect is put on western clothes, modelling
of eastern cloth is not so much considered, especially in the literature.
The reason may be that eastern cloth like Indian Sari, live much more
from textile structure and draping the textile around a body.

In our thesis, we give an overview on geometricmodellingmeth-
ods and texture mapping with respect of cloth modelling and study
their applicability with respect to the sari. In fact, none of the know
methods is applicable without changes.
Sari is an Indian garment, worn by ladies. It is a rectangular,

unstitched piece of fabric, woven using cotton, silk or other threads.
Sari is usually five meters long in length and around one to one and
half meters in width, with designed borders. Now a days, one can
buy a sari on the world wide web. But its representation on the
computer screen is themain obstacle in getting the idea of its texture
and design pattern.

The kernel of the thesis is a generalization and adaptation of
such methods, where we use a structuring of the textile shape into
four major parts. Although a sari is one piece of textile, there are
four parts distinguished by their patterns - twoKath, Padar and Ang -,
which have to bemodelled separately. By draping the textile around
a body, i.e., by generating kinds of layers, the sari is worn and so a
volumetric approach can model both, the structure of patterns and
the draping around the body.

The proposed methods are implemented in Mesa, and examples
of patterns for the sari, i.e., the four main parts are modelled and
visualized. Pictures of results are shown in the thesis too.

Zusammenfassung

Die Modellierung von Bekleidung spielt in vielen Bereichen
einen Rolle: im Bereich des E-Commerce aber auch in Trickfilmen.
Ein Schwerpunkt wird hier auf „westliche Kleidung“ gelegt, die
Modellierung von „östlicher Kleidung“ ist in der Literatur weniger
betrachtet. Dies mag wohl darin liegen, dass bei „östlicher Klei-
dung“, zBsp. dem indischen Sari, sehr viel mehr Struktur im Muster
und in der Drapierung liegt.

Der Sari ist ein Indianisches Gewand, getragen von Frauen. Es
ist ein rechteckiges, ungenähtes Stück Stoff, und ist aus Baumwolle,
Seide oder anderenFädengewebt. Ein Sari ist gewöhnlich fünfMeter
lang und ca.  bis , Meter breit, mit gemusterten Rändern. Man
kann zwar Saris übers Internet kaufen, aber die Darstellung ist meist
ungenügend und gibt keinen guten Eindruck von der Qualität und
dem Gewebe.

Wir geben in unserer Dissertation einen Überblick über Metho-
den des Geometrischen Modellierens und des Texture Mappings
in Hinblick auf Modellierung von Bekleidung und studieren deren
Anwendbarkeit auf das Bekleidungsstück „Sari“. Tatsächlich kann
keine der Methoden unmittelbar angewendet werden.

ImKern der Dissertation erweitern und adaptierenwir derartige
Methoden, wobei ein Ansatz der Modellierung des textilen Stoffes
in vier Teilbereiche - zwei Kath, Padar und Ang - verwendet wer-
den. Obwohl ein Sari eine Stoffbahn ist, so sind in dieser Stoffbahn
dochunterschiedlicheAbschnitte durchunterschiedlicheMusterun-
gen erkennbar, die getrennt modeliert werden müssen, wobei hier
gewisse sich wiederholende Strukturen zugrunde gelegt werden
können. Durch die Drapierung der Stoffbahn um den Körper, d.h.
ein „in-Falten-Legen“ des Stoffes, entsteht ein Kleidungsstück. Ein
„volumetric-approach“ wurde gewählt, weil damit die Struktur des
Musters und das geometrische Modell des Körpers gut vereint wer-
den können.

Die vorgeschlagenen Methoden werden in Mesa implementiert
und Beispiele für Muster für den sari, d.h. die vier Hauptteile, mo-
delliert und simuliert. Bilder über die Ergebnisse runden die Disser-
tation ab.

Contents

Contents i

List of Figures iii

Acknowledgements i

 Introduction 

 Sari 
. History of Indian Textile Tradition 
. What is a sari? 
. How to drape a sari? 
. Problem Specification 

 Survey of Existing Systems 
. Maya 
. SimCloth with D Studio MAX 
. FreeCloth 
. Mesad 
. OpenGL 

.. OpenGL Fundamentals 
.. Overview of Commands and Routines 

. GIMP 

 Texture Mapping 
. What is texture mapping? 
. Texture Mapping Methods 
. Applications of Texture Mapping Methods 

 Cloth Modelling 
. Cloth from a computer graphics point of view 
. Survey of cloth modelling methods 

i

ii 

. Contributions of the textile community 
.. Peirce model 
.. Strain energy methods 
.. Elasticity-based methods 

. Contributions of the computer graphics community 
.. Geometric approaches 
.. Physically based approaches 

. Continuummodel by Baraff andWitkin for rapid dynamic
simulation 

. Particle based approach by Breen and House 

 Representing sari using computer-generated patterns 
. Symbolic representation of sari 
. Problems related to sari simulation 

.. Avolumetric appearancemodel proposedbyMeiss-
ner, Eberhardt and Strasser 

.. Volumetric approach for sari simulation 
.. Collision Detection 

 Applications 

Bibliography 

List of Figures

. Sari in folded form 
. Sari worn in two different styles 

. OpenGL Operations 

. Magnified cloth samples 
. Woven and knitted textiles and detail of a knit 
. Cloth model energy functions 

(i) Collision and Stretching 
(ii) Bending 
(iii) Trellising 

. Sari with all its symbolic parts 
. Banarasi Sari 
. Sari 
. Padar of the sari 
. Kath of the sari 
. Ang of the sari. 
. Padar of the sari. 
. Kath of the sari. 
. Sari generated using its symbolic parts. 

iii

Acknowledgements

I thank Prof. Sabine Stifter, my advisor, for all her support and guidance
duringmy Ph.D. studies. I also thank Prof. FranzWinkler and Prof. Peter
Paule for their help in academic matters. I thank Prod. David Breen, for
his suggestions and encouragement. I thank Prof. Gerhard Kurka, for
discussions and providing the study material.

Finally, I thank my lovely daughter, Sira, for being there patiently
when I worked non-stop.

i

 

Introduction

Theworld has become a global village because of the advent of the Internet.
We can sit in one part of the world, say in Asia and use the Internet to
communicate with a friend from other part of the world, say in Europe, in
real time. We can buy almost everything, like books or electronic equip-
ment over the Internet. Around three years ago, I wanted to buy a sari,
an Indian garment worn by ladies about which I will talk later, on the
Internet. I searched and found many on-line sari shops. I browsed their
sari photographs and I was surprised with the quality of their represen-
tation on the computer screen. The web sites were very slow. Browsing
through their products took a lot of time as every photograph of sari took
a lot of time to load. Most of the web sites have photographs of saris, as
a fabric, or as worn by someone. These photographs did not reveal any
relevant information regarding the texture of the sari, its design patterns,
or the details of the necessary parts.

When we want to buy a sari in a shop in person, we first see it folded,
then the salesperson opens it and shows its important parts. We can touch
the fabric of the sari and see if it is cotton or silk. In the light, we can see
one layer or two layers to check the change in the colour. The appearance
changes with the light. So when we buy a sari on-line we expect to see at
least a few of these things. When we buy a book on-line, we get to read
excerpt from the book. But when I browsed the on-line sari shops, I did
not gather any such information from those photographs.

The web sites show the saris, sometimes as worn by the models or as
hanging from a bar. One can see the colour of the sari but all the other
details are not clear. Sometimes the photographs are not really aesthetic,
like in Shalincraft India. Many such things regarding depicting a sari on
the computer screen lingered in my mind for a long time.

My thesis advisor, Prof. Stifter introduced me to the texture mapping
problems for my Ph. D. thesis. During the primary reading on the topic, I
came across the problems in creating the realistic cloth textures. The jeans



   

trousers and t-shirts of the animated mouse in the film Stuart Little look
realistic, while the clothing of Pocahontas, in the same named film, looks
just like a patch of colours. What the Pocahontas character is wearing is
a variation of a sari, but it does not look realistic. I realised that though
computer graphics has progressed a lot in producing realistic clothing,
not much effort has been made to show a realistic sari on the screen. So
we decided to study the sari modelling and simulation and to generate it
using the parts that are common tomost of the saris. In short, the first task
was to find the finite number of parts that will make any of the infinite
number of possible saris on the screen, a symbolic computation problem.

The book by House and Breen [] proved to be the bible for my
preliminary studies of the topic. I communicated with Prof. Breen via
e-mail to discussmy particular problemwith him. He has contributed ex-
tensively in the research of cloth modelling and simulation by suggesting
a new method, namely a particle-based method. His suggestions about
trying the clothingmodelling software and hints about the difficulty level
of the problem directed us to concentrate more on the representation of a
sari and the study of the theoretical problems.

In the following chapter, we explain what is a sari.We also took liberty
of explaining the Indian textile tradition as the variety of the fabric used
for the saris is an important issue in creating the sari texture. We describe
the problem of creating sari through the computer-generated patterns in
detail.

Wedescribe available clothing simulation software in the third chapter
and our experiences with their installation and usage.

We take a brief look at Mesa, or OpenGL graphics programming lan-
guage in the fourth chapter along with the texture mapping concept and
how it is achieved in OpenGL.We use the termOpenGL for Mesa, asMesa
has the same structure like OpenGL and is authorised to follow the same
syntax likeOpenGL. So even if we discussOpenGLhere, we have actually
used Mesa for our programming work.

In the fifth chapter, we give an overview of cloth modelling methods.
Then we describe two approaches, one based on physically-based cloth
simulation suggested by Baraff and Witkin and one based on particle-
based approach suggested in House and Breen []. We studied these
methods from sari simulation point of view. We discuss here the most
suitable one for simulation of a sari. As sari is worn in layers, cloth
collision is a big issue. We explain collision detection algorithm.

We suggest an approach to generate a sari on the computer screen
using four parts that are present in most of the saris. Though a sari
is a continuous, non-stitched garment, we have to differentiate it into
four symbolic parts, to make it representable on the computer screen.
As usually there are many saris with the same four parts but with the



different colour we can save a lot of hard disk space with this approach.
We explain this strategy in the sixth chapter. We are trying to achieve its
full draping over a body.

In the last chapter, we list a few applications of our work, like simplic-
ity of generation of the different saris will make it useful in the presenta-
tion of sari on an on-line shop web site.

 

Sari

Animated figures, like characters in the animation films, need clothing.
Most of the animated characters wear the skin-tight clothes like trousers
and skirts. The sari, an Indian traditional wear for women, is quite
different. It is worn around the bodywith some other under garments. So
these kind of non-skin-tight clothing moves independently of the wearer.
These depicts complicated movement with many wrinkles and creases.
Thus, sari is itself a challenging thing to simulate.

For someone who is not very close to the Indian culture, it is very
difficult to imaginewhat is a sari.Thanks to theworldwideweb, now there
is a lot of informationabout the Indian textiles. GhoshandGhosh is a good
source for the historical development of the Indian textile traditions. Also
IndiCraft has a good collection of articles about the textile traditions in
India and various clothing and printing styles from the different states of
India. We reproduce some part from these sources, which is not technical
but, is necessary for the better understanding of the problem.

. History of Indian Textile Tradition
The origin of the Indian textiles can be traced to the Indus valley civi-
lization. The people of this civilization used the homespun cotton for
weaving their garments. Excavations at Harappa and Mohen-jo-Daro,
have unearthed household items like needles made of bone and spin-
dles made of wood, amply suggesting that homespun cotton was used
to make garments. The fragments of woven cotton have also been found
from these sites.

The first literary information about the textiles in India can be found
in the Rigveda, which refers to weaving. The ancient Indian epics-Ramayan
and Mahabharat also speak of a variety of fabrics of those times. The



   

Ramayan refers to the rich styles worn by the aristocracy on one hand and
the simple clothes worn by the commoners and ascetics.

Ample evidence on the ancient textiles of India can also be obtained
from the various sculptures belonging to Mauryan and Gupt age as well as
from the ancient Buddhist scripts and murals in Ajantha caves.

India had numerous trade links with the outside world and the Indian
textiles were popular in the ancient world. The Indian silk was popular in
Rome in the early centuries of the Christian era. Hoards of fragments of
cotton material originating from Gujarat have been found in the Egyptian
tombs at Fostat, belonging to the fifth century A.D. Cotton textiles were
also exported to China during the heyday of the silk route.

The silk fabrics from south India were exported to Indonesia dur-
ing the thirteenth century. India also exported printed cotton fabrics or
Chintz, to European countries and the Far East before the coming of the
Europeans to India. The British East India Company also traded in the
Indian cotton and silk fabrics, which included the famous Dacca muslin.
Muslin from Bengal, Bihar and Orissa were also popular abroad.

. What is a sari?

The Indian sari (also written as saree, sadi) boasts of oldest existence in
the sartorial world. It is more than  years old. It is mentioned in
the Vedas, written in  B.C., the oldest existing (surviving) literature.
Patterns of dress change throughout the world now and then but, the sari
has survived. More than % of the woman population in India (now
more than half a billion as per official estimate) wear versatile sari. We
can certainly call this cloth versatile because it could be worn as shorts,
trousers, flowing gown-like or convenient skirt-wise–all without a single
stitch.

Sari (original–Chira in Sanskrit, cloth) is of varied length. From 5
yards to 9.5 yards tied loosely, folded and pleated, it could be turned into
working dress or party-wear with manual skill. The styles in wearing a
sari vary from region to region. The Gujarati and Bengali style are different,
and so are Mangalorean, Kannadiga, Kodava, Tamilian, Malayali, etc. Thewebsite
Boulanger will be helpful to understand various ways to wear a sari.

Chintz - Cotton cloth, printed with flowers and other devices, in a number of
different colours, and often glazed.

Muslin - A thin cotton, white, dyed, or printed. The name is also applied to coarser
and heavier cotton goods; as, shirting and sheeting muslin.

Yard - a unit of length equal to 3 feet; defined as 91.44 centimetres; originally taken
to be the average length of a stride.

.    ? 

Thus, a sari is a rectangular piece of cloth, woven using cotton, silk or
other threads, usually five meters long in length and around one to one
and half meters in width. Please see Figure . to see a sari in its folded
form. Although it is an un-tailored length of cloth, the fabric is highly
structured and its design vocabulary very sophisticated. The main field
of the sari is framed on three sides by a decorative frieze of flowering
plants, figurative images or abstract symbols. Two of the borders define
the edges of the length of the sari and the third comprises the end piece,
which is a visible, broader,more complex version of the other twoborders.
This end piece is the part of the sari that is draped over the shoulder and
left to hang over the back or front.Figure . shows saris worn in two
styles. The red sari is worn in Gujarati style and the blue sari is worn
in Maharashtrian style. This Maharashtrian style is very widely used and
popular sari wearing style, please see Boulanger for further information
on sari wearing styles.

Though, a sari is not a stitched fabric, for explaining it in simple terms,
let us differentiate a sari into its main visual parts. So let us assume that
a sari has four main parts: two Kath, Padar and Ang. A Kath is a border at
the longer sides of the sari, woven using Jar. A Jar is a kind of brocade,
usually golden or silver threads but sometimes it can be of the other
colours matching to the fabric of the sari. Sometimes even real gold or
silver filaments are also used in the Kath. The upper Kath is fixed in the
petticoat and so it is not visible. A Padar is an ornamental border at the
end of the sari, the end which is kept flowing from the shoulder. The
inner Padar is wrapped around the waist under the layers of the sari, so is
not visible and thus not so important. And Ang is the basic fabric of the
sari, we can say it is the middle part of the sari, between the Kath and the
Padar.

The Padar usually elaborates the theme found in the two borders and
the actual field of the sari, a sort of repetition and amplification in the
manner of the Indian musical mode, the raga. The raga has a set number
of notes and these are intoned in a form of verbal mnemonics, before the
song is actually sung. No new notes other than those in the introduction
are used, but improvisation is allowed and results in endless permuta-
tions and combinations. This beautiful metaphor thus compares the two
narrow borders to the introductory recital of the pure notes and the Padar
to the song. The design, whether woven, embroidered, painted or block-
printed, needs to maintain the proportion and balance between the Ang,
two Kath and the Padar. The pattern creates its own rhythm. For instance,
the scattering of spot weft gold dots increase in the Padar for a denser,
richer pattern and gradually and softly decrease on the actual ground of
the sari.

The traditions of the region dictates the pattern and content of the sari

   

F .: Sari in folded form

.    ? 

F .: Sari worn in two different styles

   

where it is produced. Almost every district and sometimes even different
villages have their own sari tradition which employs a complex language
of symbols. But though characterized by geographical considerations, all
the Indian symbolism, abstract or figurative, is rooted in the natural or
physical world.

The fabric is always light enough not to interfere with the fluidity of
the drape is another source of varied tactile delight—cottons, silks, cottons
mixed with silk, chiffon and tissues are some of the preferred mediums.
In the recent times, synthetic polyester has made inroads into the fashion
world of the sari.

The sari takes final shape in visual terms only when it is draped on a
person. The slightly off-centre fan of pleats in the front, the floating Padar
with the intricate border thrown over the shoulder and the relatively
smooth drape of the material at the back; the wound, pleated, tucked
and coiled material give the proportions an aesthetic and intelligent ra-
tionality. To an unaccustomed onlooker, a draped sari seems an insecure
affair, in danger of coming undone at the slightest movement. Actually,
this apparently flimsy concoction is buttressed by a stout, distinctly un-
romantic, cotton petticoat. The top edges of the pleats are tucked into the
waistband of this nether garment, thereby almost eliminating the risk of
the sari coming adrift.

For an un-stitched length of material, the wearing of a sari entails a
lot of preparation. Most saris have a fall made of cotton attached to the
inside lower Kath, and the choli or blouse that teams upwith the sari should
match the ground colour of the sari, or at least echo one of the tints in the
borders or motifs. The sari follows the shape of the body, yet conceals, it
is often said, a hundred imperfections. It is true that not only is it one of
the most graceful of garments, but also one of the kindest. This perhaps
explains its perennial charm.

The success of the sari through the ages is attributable to its total
simplicity and practical comfort, combined with the sense of luxury a
woman experiences. Though men are intrigued by the demure, floor-
length attire and tantalizing display of a bare midriff at the back, it is
said that sari rarely fails to flatter a woman, making her feel fragile and
feminine. It is an instant fashion, created by the hands of the wearer and
subject to none of the vagaries and changes which plague the modern
fashion scene.

Sari’s price ranges from Rs.  to Rs. , or Euro  to  approx-
imately and sometimes even more. This makes it accessible economically
to almost all the people.

.     ? 

. How to drape a sari?
As we have already explained there are many draping styles. Here we
will explain step by step the most common method.

Step  To wear a sari, one needs a petticoat and a blouse. A petticoat
is an undergarment worn under and prior the sari is draped around the
body. Its height is fromwaist to the feet. It is of the same colour as theAnga
of the sari so that it is not visible, directly or indirectly through the sari.
A blouse is a top undergarment worn over the chest. Usually it is also of
the same colour as of the Ang of the sari, but it could be matching to the
Padar or contrast to the sari. It comes in various designs, sleeve’s length is
varying so as the neckline of the blouse. Also its length depends on the
wearer’s choice and liking. Usually it is tight fitting but one can found
many variations of it too. So we can say that the blouse ends just above
the waistline and the petticoat begins from the waistline.

Step  Just below the navel, upper end of the inner Kath of the sari is
tucked into the petticoat and wrapped around it and brought where the
wrap has begun. For a Maharashtrian draping style, this wrapping is done
in anti-clockwise direction.

Step  This tucked-in end of the sari, is held in both hand and the
pleats are made with left hand and right hand held the loose end of the
sari, approximately four or five inches deep.

Step  About seven to ten pleats are made and hold them up together
so that they fall straight and even.

Step  The pleats are tucked into the waist slightly to the left of the
navel, just towards the left.

Step  The remaining sari is wrapped around the body, from left to
right, and brought up from under the right arm and over the left shoulder
and let it fall from backside about the level of the knees. This flowing part
is the Padar of the sari.

Step  The Padar and pleats are fixed using a sari pin or a safety pin
too.

Though, while reading its description of how to wear a sari, it looks
like a complex process, it is very easy matter when we do the practical.

. Problem Specification
The goal is to achieve the complete sari simulation. The whole problem
is very difficult according to the expert’s opinion. Therefore let us break
this problem into small tasks.

First task is to divide this un-stitched long cloth in different parts so
thatwe can represent the important partswith the details on the computer

   

screen. Also it should bemore efficient in speed andmemory than saving
and showing the complete picture of a sari. This we have achieved by
dividing a sari in four different parts as explained in the previous sections.

Every sari does not have all the parts. Sometimes even only Ang is
present, of course then the design is not so interesting. But our program
should cater all these possibilities. Also if we show the full length of the
sari with exact proportions then Kath and Padar will be insignificant and
one will not be able to see the details. Therefore in programming we
have to somehow show these four parts in proportion where every part
is significantly visible. This also helps us in generating different saris on
the screen using different colours and texture mapping.

The next task is to simulate the draping of sari over the human body.
To have a realistic sari simulation, we need a sari created using a cloth
simulation software, which will serve the specific needs of the fabric of
the sari. This involves the study of the clothmodellingmethods. Also the
task includes the survey of the available software and the previous work
done in this direction.

The sari is wrapped over the body in layers. So collision of the cloth
with itself, because of the layers, and collision of the clothwith the surface
depicting human body is a crucial issue. Therefore the study of the
collision detection algorithm is an important task. Finally, we need to
find the suitable clothmodellingmethod for the generation of the realistic
cloth, which also shows the minute differences of different fabrics used
for the sari.

 

Survey of Existing Systems

In this chapter, we describe the available software for clothmodelling and
simulation.

One could try for freely available cloth simulators, but the main ob-
stacle is there are not many. The only possibility is FreeCloth FreeCloth.
This uses the method suggested by Baraff and Witkin Baraff and Witkin
[] but matrices are solved using LU decomposition of a dense ma-
trix, unlike to the Baraff and Witkin’s modified conjugate method, which
results in the computation of large cloth sizes impractical and also colli-
sion detection or adaptive time stepping is not been implemented. Hence
there remains only one possibility to develop one cloth simulator as per
the need.

This is a huge task in itself. We contacted Prof. Breen regarding
our work and he warned us that it is huge task and will take enormous
effort. According to him, sari is not yet modelled neither he knew any
group working on this project. He suggested to use some kind of cloth-
ing modelling software from somewhere and then modify it for the sari
simulation. FreeCloth is available for free use from the Internet but some
of the libraries needed for it did not install in our institute and so we
could not even try this. We tried to get hold of any other software but
we did not find any working software of such type. Also commercial
software systems like d StudioMax orMaya, don’t comewith the source
code and they are very expensive. We found out that the only research
group working on cloth modelling research is MIRALab in Switzerland.
We could not communicate with this group and we found out that they
usually do not share their software.

Our goal is to create computer-generated draping simulations of saris
based on the type of material and design pattern. Since hardly anyone is
aware of the sari patterns in computer graphics world, our main aim is to
first introduce the concept and then improvise the simulation.



      

Unavailability of a good cloth modelling software forced us to study
the cloth modelling methods from the point of view of sari and design a
sari simulator.

. Maya
The first and foremost software to simulate cloth is Maya. Maya is a
trademark of AliasWavefront. An Academy Award winning software,
Maya, is the most comprehensive software for producing D and D
graphics. It is the most powerfully integrated software for D modelling,
animation, effects, and rendering. It has customisable user interface and
artist-friendly brush-based tools which make MayaŠs industry-standard
D features easy to learn and easy to use. It adds to the quality and realism
of D and D graphics. That’s why it is widely used and popular among
the film and video artists, game developers, visualization professionals,
Web and print designers.

Maya family includes Maya Unlimited, Maya Complete and Maya Per-
sonal Learning Edition. The first two are for commercial users, and the
last one is for non-commercial use and freely available from the web site
Maya.

Maya can be used to produce unsurpassed character animation and
create spectacular particle and dynamic effects, manage complex scenes
and large data sets more efficiently. It can model breathtaking environ-
ments,movequicklybackand forthbetweenMayaandAdobePhotoshop,
build and organize sophisticated shader networks faster. It uses mental
ray more powerfully ever, add clothing, fur or long hair to the animated
characters. It can also be to create and view interactive web pages for
tutorials; scene and asset management.

This is especially useful to

• add D realism to D print projects and presentations such as ad-
vertisements, point of purchase displays and product logos,

• make web sites stand out from the crowdwith dazzling visuals and
animation,

• realize visually sophisticated artwork for books,magazines, posters,
newsletters and other media,

• visualizemodels for industrial design, engineering andarchitecture,
and then take them to the next level with D effects and animation,

On March ,  the Academy of Motion Picture Arts and Sciences awarded
AliasWavefront an Oscar for scientific and technical achievement for the development
of Maya software.

.  

• quickly add D treatments, animation and effects to existing work
from other graphics programs, such as Adobe Photoshop and Illus-
trator,

• as well as the first choice for the creation of digital characters, ani-
mation and special effects for blockbuster movies and games.

Maya comes with three options:

Maya Unlimited is the ultimate version of Maya, and the choice of dig-
ital content creators who are looking to take their D projects to
the most advanced level. Maya Unlimited provides artists and ani-
mators with industry leading innovations—Maya Cloth, Maya Fur,
MayaLive andMayaFluidEffects—for the creationof highly sophis-
ticated digital content. It is available on Windows XP Professional,
Windows  Professional, IRIX and Linux except for Mac OS X.

Maya Complete integrates the worldŠs foremost animation, visual ef-
fects, modelling and advanced rendering technology into one com-
plete workflow solution. Its development has been inspired by
the film and video artists, computer game developers and design
professionals who use it daily to create engaging digital imagery,
animation and visual effects. It is available on Windows XP Profes-
sional, Windows  Professional, MacOS X, IRIX and Linux.

Maya Personal Learning Edition is a special version of Maya software,
which provides free access to Maya for non-commercial use. It al-
lows D graphics and animation students, industry professionals,
and those interested in breaking into the world of computer graph-
ics (CG) an opportunity to explore all aspects of the award winning
Maya Complete software in a non-commercial capacity. It is avail-
able for Mac OS X (.. or higher recommended), Windows 
Professional andWindows XP operating systems. It is not available
for Windows , Windows , Windows ME, Linux or IRIX operat-
ing systems. Current version of Maya Personal Learning Edition is
based on Maya .

Maya has tools such asmarkingmenus and Dmanipulators and user
friendly interface which help to speed up the workflow. It has tools for
modelling a full suite of advanced Polygons, NURBS and Subdivision
Surfaces. Its comprehensive range of keyframe, non-linear and advanced
character animation editing tools help to create, animate, adapt and pur-
pose the animation data and edit realistic digital characters. High-speed,
dynamic interaction of hard and organic objects determined by physical
rules help to create realistic visual effect. Brush-Based TechnologiesMaya

      

Artisan, Maya Paint Effects and D Paint offer a unique suite of integrated
pressure sensitive brush tools for modelling, creating D and D effects,
and painting on geometry and textures. A unified rendering workflow
provides easy and consistent access to MayaŠs software, hardware, men-
tal ray and vector renderers through a common interface. Maya API/SDK
andMEL development resources allow to customize and extendMaya Šs
capabilities via the renowned Maya embedded scripting language and a
full Application ProgrammersŠ Interface.

MayaUnlimited  includes everything inMaya Complete. It has some
additional tools which are useful for realistic computer animation. We
list a few here.

Maya Fluid Effects, for the simulation and rendering of a huge variety
of atmospheric, pyrotechnic, viscous liquid, and open ocean effects.

Maya Cloth, for simulating a wide variety of digital clothing and other
fabric objects.

Maya Fur, for realistic styling and rendering of short hair and fur, with
the Maya Artisan brush interface for painting fur attributes.

Maya Live , for creating original live-action footage with D elements
rendered in Maya.

Maya Hair Tools, for the creation, styling and rendering of fully dynamic
long hair on NURBS or polygon objects. It includes the ability to
make any NURBS curve dynamic for use in advanced character
rigging and effects.

Maya Personal Learning Edition has main toolsets of Maya Complete
including modelling (NURBS, polygon, subdivision surface), animation,
inverse kinematics, MayaArtisan, Maya Paint Effects, particles, dynamics
andMaya’s software and hardware renderers. The Maya Personal Learn-
ing Edition restricts users to non-commercial applications through the
display of a watermark on images as well as through the use of a special
non-commercial file format.

Thus, Maya Personal Learning Edition includes most of the function-
ality of Maya Complete with few differences. For example, is limited to
using a single CPU. The commercial version of Maya takes advantage of
multiple CPUs, resulting in faster performance in areas such as software
rendering, IPR and Paint Effects. A watermark text image appears across
all rendered images and in someMaya Personal Learning Edition panels.
The watermark does not appear when working in wireframe mode. Ren-
dering using mental ray, or vector renderer is not possible. The output
cannot be saved as -bit rendered image formats. Camera’s film fit offset

.  

and film offset are limited to . Rendering is limited to a single CPU. Im-
ages from the software rendering output in Render View and batchmode,
hardware rendering output in Render View and batch mode, Hardware
render buffer Paint Effects canvas mode and scene mode, UV snapshot in
UV texture Editor and D Paint Tool have been limited to x.

The standard Maya software files (.ma, .mb) cannot be used; it has
different file format to save images, that is (.mp), however, the standard
Maya software files can be imported. Particle disk caching is not sup-
ported. Text dump from the Blind Data Editor window is not supported.
Exporting skin weight maps and character maps is not supported. The
API developer’s kit is not included withMaya Personal Learning Edition.
It is not possible to load plug-ins from the commercial version of Maya or
third party plug-ins. The scriptEditor - writeHistory option is not avail-
able. The following MEL commands are not available: system, fopen,
popen, fwrite, fprint and cmdpipe. The script editor output section is
limited to  lines of output. The script editor > Save Selected menu item
has been removed. The background colour’s value (in HSV space) of
interactive window is limited to [.,.].

Since, Maya Personal Learning Edition is based on Maya Complete,
therefore, features that are part of Maya Unlimited are not included.
Hence, it does not have features like Maya Cloth.

The distinguished feature of Maya in which we are interested isMaya
Cloth. It is the most accurate and fastest software solution for simulating
a wide variety of digital clothing and other fabric objects.

It allows user to work with cloth objects created frommodelled geom-
etry or garments constructed from flat panels. It’s intuitive workflow en-
ables any D figure to be dressed and animated with automatic stitching,
draping, and gathering of cloth panels into a perfectly fitting garment. It
is possible to create realistic clothing including jackets with collars, vents
and lapels, pantswith cuffs and pockets. Also one can create loose or tight
fitting clothing styles. Also it is possible to simulate fabric such as heavy
cotton, stiff canvas and thick leather or even mix fabrics in one garment.
Maya’s clothing pinching solution addresses the difficult problem of cloth
pinched between two objects such as under the arm. In Maya, controls
such as button constraints, or cloth-to-cloth constraints allow for greater
control of realistic clothing behaviour.

Using Maya, any cloth object can be animated including sails, skins,
tents, drapery, bedding etc.. Real-world physical cloth characteristics can
be reproduced using Maya Cloth at unsurpassed speed and accuracy. It
is possible to animate multiple independent cloth systems with their own
objects and forces and caching of data is supported for real-time playback.

Maya Cloth is fully(or totally) integrated with Maya Software. Thus,
inMaya, clothingmoves, folds, and gathers whenever the animated char-

      

acters move. Texturing and shading is easier using Maya Cloth. Cloth
property and texture painting is done with Maya Artisan brush interface.
In Maya, use of it’s dynamic forces such as turbulence and air fields to
create strong wind effects on a coat or to make rain particles splash off a
flapping raincoat.

MayaUnlimited version is for around  dollar andMaya Complete
comes with price around  dollar, for node-locked licenses. Node-
locked License is locked to one workstation and cannot be used on other
machines.

Since, Maya Unlimited is very expensive and its free version does not
include the Maya Cloth, we could not use Maya.

. SimCloth with D Studio MAX
SimCloth is a simple cloth plugin for D StudioMAX capable of simulating
different kinds of fabrics, as well as rigid bodies. SimCloth supports full
collision and self-collision detection and response. Taking a source object
it tries to modify it so that it looks as if its a soft or hard body or a piece
of cloth having properties like material friction, internal tension, softness.
The modification is based on collision objects that can be specified within
the plugin itself.

It is freely available from the web site, SimCloth. Version  is also
open source so that you can modify it to suit your needs.

D Studio MAX software prices range between  to  dollars,
d Studio Max. Even though SimCloth is free, we need to buy D Stu-
dio MAX which is still very expensive so had to search for other cloth
simulator which are freely available.

. FreeCloth
FreeCloth is a free, open-source cloth simulation tool. It is intended to
help with further research in cloth simulation, and to help in production
of feature films or games using cloth. In its initial form, the simulation has
been implemented using algorithms described in “Large Steps in Cloth
Simulation” by Baraff and Witkin. Pritchard gives detailed information
about the implementation work of FreeCloth. Till the FreeCloth, version
, some features like collision detection are not incorporated but still it
is better tool to begin with. It is available from the web site, FreeCloth.
We tried to install and this version, that is, version , but its latest version
is , available from the above web site although we did not yet try it.
Since, its source code is available for improvisation, we were interested

.  

to use it. We tried its installation and encountered some problem which
we could not overcome. We enlist main problems here as they are quite
a hindrance to the popularity of this software.

FreeCloth is implemented in C++. It depends upon external free li-
braries, that are, OpenGL, GLUT, GLUI, and libraries for liner algebra
functionalities. Its version  needs Matrix Template Library, MTL, and
version  needs BoostBoost and uBLAS, uBLAS, which in turn needs
LAPACK, LAPACK. Till this version , it has been compiled on Linux
and Windows, but it might be straightforward to port to other operating
systems, provided that a good enough C++ compiler is available. Solid
C++ engineering techniques have been applied to create a fairly robust
and modern application. It depends upon external free libraries, that
are, OpenGL, GLUT, GLUI, and libraries for liner algebra functionalities.
Its version  needs Matrix Template Library, MTL, and version  needs
BoostBoost and uBLAS, uBLAS, which in turn needs LAPACK, LAPACK.
Till this version , it has been compiled on Linux and Windows, but it
might be straightforward to port to other operating systems, provided
that a good enough C++ compiler is available. Solid C++ engineering
techniques have been applied to create a fairly robust and modern appli-
cation.
uBLAS is a C++ template class library that provides BLAS level , ,

 functionality for dense, packed and sparse matrices. The design and
implementation unify mathematical notation via operator overloading
and efficient code generation via expression templates.

TheBLAS (Basic LinearAlgebra Subprograms) are highquality “build-
ing block” routines for performing basic vector and matrix operations.
Level  BLAS do vector-vector operations, Level  BLAS domatrix-vector
operations, and Level  BLAS do matrix-matrix operations. Because the
BLAS are efficient, portable, andwidely available, they’re commonly used
in the development of high quality linear algebra software, LINPACKand
LAPACK for example.
LINPACK is a collection of Fortran subroutines that analyse and solve

linear equations and linear least-squares problems. The package solves
linear systems whose matrices are general, banded, symmetric indefi-
nite, symmetric positive definite, triangular, and tri-diagonal square. In
addition, the package computes the QR and singular value decomposi-
tions of rectangular matrices and applies them to least-squares problems.
LINPACK uses column-oriented algorithms to increase efficiency by pre-
serving locality of reference.

LINPACK was designed for supercomputers in use in the s and
early s. LINPACK has been largely superseded by LAPACK, which
has been designed to run efficiently on shared-memory, vector supercom-
puters.

      

LAPACK, or Linear Algebra PACKage, provides routines for solving
systems of simultaneous linear equations, least-squares solutions of linear
systems of equations, eigenvalue problems, and singular value problems.
The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, gen-
eralized Schur) are also provided, as are related computations such as
reordering of the Schur factorizations and estimating condition numbers.
Dense and banded matrices are handled, but not general sparse matri-
ces. In all areas, similar functionality is provided for real and complex
matrices, in both single and double precision.

The MTL, or Matrix Template Library, is a high-performance generic
component library that provides comprehensive linear algebra function-
ality for a wide variety of matrix formats.

MTL uses a five-fold approach, consisting of generic functions, con-
tainers, iterators, adaptors, and function objects, all developed specifically
for high performance numerical linear algebra. Within this framework,
MTL provides generic algorithms corresponding to the mathematical op-
erations that define linear algebra. Similarly, the containers, adaptors, and
iterators are used to represent and to manipulate concrete linear algebra
objects such as matrices and vectors.

To many scientific computing users, however, the advantages of an
elegant programming interface are secondary to issues of performance.
Generic programming is a powerful tool in this regard as well - perfor-
mance tuning can itself be described in a generic fashion. These perfor-
mance tuning abstractions are realized in a generic low-level library - the
Basic Linear Algebra Instruction Set (BLAIS). Experimental results show
that MTL with the BLAIS achieves performance that is as good as, or bet-
ter than, vendor-tuned libraries. Thus, MTL demonstrates that the proper
abstractions can be used to achieve high levels of performance, contrary
to conventional wisdom. In addition, MTL requires orders of magnitude
fewer lines of code for its implementation, with the concomitant savings
in development and maintenance effort.

We tried to first install FreeCloth . and later . on Linux , but neither
version worked. We needed to install other libraries, mentioned above,
separately which did not install properly as some necessary files were
missing. It took almost three weeks to download and try the installation
of these libraries and FreeCloth itself. Since we could not find every file
needed for the installation, we had to give up our efforts to use FreeCloth.

. Mesad
The Mesa Mesa project was founded by Brian Paul. Mesa is a three
dimensional graphics library with an API which is very similar to that of

.  

OpenGL. To the extent thatMesa utilizes theOpenGL command syntax or
state machine, it is being used with authorization from Silicon Graphics,
Inc.(SGI). However, the author does not possess an OpenGL license from
SGI, andmakesno claim thatMesa is in anywaya compatible replacement
for OpenGL or associatedwith SGI.We here give a brief overview ofMesa
and OpenGL as we used Mesa for our implementation work but since
Mesa uses the syntax from OpenGL, we explain the working of OpenGL
even though we did not exactly use it.

Mesa is an open-source implementation of the OpenGL specification.
OpenGL is a programming library for writing interactive D applica-
tions. Mesa .x supports the OpenGL . specification. Mesa serves
as the OpenGL core for the open-source XFree/DRI OpenGL drivers.
Hardware-accelerated OpenGL implementations are available for most
popular operating systems today. Still, Mesa serves at least these pur-
poses:

• Mesa is used as the core of the open-source XFree/DRI hardware
drivers.

• Mesa is quite portable and allows OpenGL to be used on systems
that have no other OpenGL solution.

• Software rendering with Mesa serves as a reference for validating
the hardware drivers.

• A software implementation of OpenGL is useful for experimenta-
tion, such as testing new rendering techniques.

• Mesa can render images with deep colour channels: -bit inte-
ger and -bit floating point colour channels are supported. This
capability is only now appearing in hardware.

• Mesa’s internal limits, maximum lights, clip planes, texture size,
etc., can be changed for special needs, although hardware limits are
hard to overcome.

Mesa serves as the OpenGL core for the open-source XFree/DRI
OpenGL drivers. There have been other hardware drivers for Mesa over
the years, such as the Dfx Glide/Voodoo driver, an old S driver, etc.,
but the DRI drivers are the modern ones. We cannot upgrade the DRI
installation to use a new Mesa release, as a copy of the Mesa source
code lives inside the XFree/DRI source tree and gets compiled into
the individual DRI driver modules. If we try to install Mesa over an
XFree/DRI installation, we lose hardware rendering, because stand-
alone Mesa’s libGL.so is different than the XFree libGL.so.

      

To install Mesa on a Linux-based system, we can download it from
the web site Mesa or use the distro CD, which most probably may
have Mesa packages, like RPM or DEB . Unfortunately, the GNU auto-
conf/automake/libtool system does not work too well on non GNU/Linux
systems. So Mesa uses a rather conventional Makefile system.

A GNU autoconf/automake system used to be included, but was dis-
carded in Mesa . because it seldom worked on IRIX, Solaris, AIX, etc.
For Compilation, once we get the hold of Mesa through CVS, we do this
first: cd Mesa chmod a+x bin/mklib Just type make in the top-level di-
rectory, and we see a list of supported system configuration. Choose one
from the list (such as linux-x), and type: make linux-x86

We rebuild it for a different configuration by running make realclean
before rebuilding. When compilation hi finished, we look in the top-
level lib/ directory. We see a set of library files, like libGL, the main
OpenGL library (i.e. Mesa), libGLU, the OpenGL Utility library, libglut,
the GLUT library, libGLw, the Xt/Motif OpenGL drawing area widget
library, libOSMesa, the OSMesa (Off-Screen) interface library.

Once we download or unpack the MesaDemos-x.y.z.tar.gz archive or
obtained Mesa from CVS, the progs/ directory will contain a bunch of
demonstration programs. Before running a demo, we may have to set
an environment variable (such as LD_LIBRARY_PATH on Linux to indicate
where the libraries are located.

The standard location for the OpenGL header files on Unix-type sys-
tems is in /usr/include/GL/. The standard location for the libraries is
/usr/lib/. To install Mesa’s headers and libraries, we run make install.
Then we get the prompt to enter alternative directories for the headers
and libraries.

We give here a brief procedure of installing Mesa on Linux environ-
ment, but it does not go so smooth as it is been described here. We almost
spend fours weeks and eventually installed Mesa at least three times.
Once we run some make command from above procedure, it gave some
error messages. Then we checked logs and found what was missing.
Then we go back to download and install that particular library and then
again compileMesa. It was quite a tediouswork although itworked at the
end andwas a great help for our implementationwork. The only problem
about using Mesa is we cannot upgrade it to latest release and we would
have to do all the same procedure we did for the version we installed,
that is Mesa, .. Mesa uses an even/odd version number scheme like
the Linux kernel. for example, odd numbered versions designate new
developmental releases and even numbered versions designate stable re-
leases. So, using Mesa . has been proved a good choice and we did not
encounter any problem during our implementation work.

.  

. OpenGL
OpenGL is a graphics rendering library, that is, it is a layer of abstraction
between graphics hardware and an application program. It it an API to
produce high-quality colour images fromgeometric and raster primitives.
API is an Application Programming (or Procedural) Interface. Geometric
primitives are vertex-based and are either D or D. Raster primitives
are pixel-based (either bitmaps or pixmaps) and generally D. Texture
mapping combines both raster and geometric primitives to create an im-
age. OpenGL libraries are supported for use with XWindow System and
UNIX, Microsoft Windows, Microsoft Windows NT, and IBM OS/. It
it Window System and Operating System independent. It does not per-
form operations which are redundant with the window system: window
management, event (mouse and keyboard) handling, and loading colour
maps. We used the OpenGL Blue Book; OpenGL Red Book for studying
the OpenGL concepts.

As a software interface for graphics hardware, OpenGL’s main pur-
pose is to render two- and three-dimensional objects into a frame buffer.
These objects are described as sequences of vertices, which define geo-
metric objects, or pixels, which define images. OpenGL performs several
processing steps on this data to convert it to pixels to form the final desired
image in the frame buffer.

Here, we present a global view of how OpenGL works;

• OpenGL Fundamentals explains basic OpenGL concepts, such as
what a graphic primitive is and how OpenGL implements a client-
server execution model.

• Basic OpenGL Operation gives a high level description of how
OpenGL processes data and produces a corresponding image in
the frame buffer.

.. OpenGL Fundamentals
This section explains some of the concepts inherent in OpenGL.

Primitives and Commands
OpenGL draws primitives, points, line segments, or polygons, subject to
several selectable modes. We can control modes independently of each
other; that is, setting one mode does not affect whether other modes are
set, although many modes may interact to determine what eventually
ends up in the frame buffer. Primitives are specified, modes are set, and

      

other OpenGL operations are described by issuing commands in the form
of function calls.

Primitives are defined by a group of one or more vertices. A vertex
defines a point, an endpoint of a line, or a corner of a polygon where
two edges meet. Data consisting of vertex coordinates, colours, normals,
texture coordinates, and edge flags is associated with a vertex, and each
vertex and its associated data are processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices
must be clipped so that a particular primitive fits within a specified re-
gion; in this case, vertex data may be modified and new vertices created.
The type of clipping depends on which primitive the group of vertices
represents.

Commands are always processed in the order in which they are re-
ceived, although there may be an indeterminate delay before a command
takes effect. This means that each primitive is drawn completely before
any subsequent command takes effect. It also means that state-querying
commands return data that is consistent with complete execution of all
previously issued OpenGL commands.

Procedural versus Descriptive
OpenGL provides direct control over the fundamental operations of two
and three dimensional graphics. This includes specification of such pa-
rameters as transformation matrices, lighting equation coefficients, an-
tialiasing methods, and pixel update operators. However, it does not
provide a means for describing or modelling complex geometric objects.
Thus, the issued OpenGL commands specify how a certain result should
beproduced, that is, what procedure shouldbe followed, rather thanwhat
exactly that result should look like. That is, OpenGL is fundamentally
procedural rather than descriptive. Because of this procedural nature, it
helps to know how OpenGL works—the order in which it carries out its
operations, for example—in order to fully understand how to use it.

Execution Model
OpenGL commands are interpreted using client-server model. An appli-
cation, the client, issues commands, which are interpreted and processed
by OpenGL, the server. The server may or may not operate on the same
computer as the client. In this sense, OpenGL is network-transparent. A
server canmaintain several GL contexts, each of which is an encapsulated
GL state. A client can connect to any one of these contexts. The required
network protocol can be implemented by augmenting an already existing

.  

Commands
-

-

-

6

?

- - - -

�

6

?

6

6

Display
List

Evaluator

Pixel
Operations

Texture
Memory

Per-Vertex

Assembly

Operations
& Primitive

Rasteri-
zation

Per-
Fragment
Operations Buffer

Frame

F .: OpenGL Operations

protocol, such as that of the X Window System, or by using an indepen-
dent protocol. No OpenGL commands are provided for obtaining user
input.

The effects of OpenGL commands on the frame buffer are controlled
by thewindow system that allocates frame buffer resources. Thewindow
systemdetermineswhichportions of the framebufferOpenGLmayaccess
at any given time and communicates to OpenGL how those portions are
structured. Therefore, there are no OpenGL commands to configure the
frame buffer or initialise OpenGL. Frame buffer configuration is done
outside of OpenGL in conjunction with the window system; OpenGL
initialization takes place when the window system allocates a window
for OpenGL rendering.

Basic OpenGL Operation
The Figure . gives an abstract, high-level block diagramof howOpenGL
processes data. In thediagram, commands enter from the left andproceed
throughwhat canbe thought of as aprocessingpipeline. Some commands
specify geometric objects to be drawn, and others control how the objects
are handled during the various processing stages.

As shown by the first block in the diagram, rather than having all
commands proceed immediately through the pipeline, we can choose to
accumulate some of them in a display list for processing at a later time.

      

The evaluator stage of processing efficiently approximates curve and
surface geometry by evaluating polynomial commands of input val-
ues. During the next stage, per-vertex operations and primitive assem-
bly, OpenGL processes geometric primitives—points, line segments, and
polygons, all of which are described by vertices. Vertices are transformed
and lit, and primitives are clipped to the viewport in preparation for the
next stage.
Rasterization produces a series of frame buffer addresses and associ-

ated values using a two-dimensional description of a point, line segment,
or polygon. Each fragment so produced is fed into the last stage, per-
fragment operations, which performs the final operations on the data before
it’s stored as pixels in the frame buffer. These operations include condi-
tional updates to the frame buffer based on incoming and previously
stored z-values, for z-buffering, and blending of incoming pixel colours
with stored colours, as well as masking and other logical operations on
pixel values.

Input data can be in the form of pixels rather than vertices. Such data,
which might describe an image for use in texture mapping, skips the first
stage of processing described above and instead is processed as pixels, in
the pixel operations stage. The result of this stage is either stored as texture
memory, for use in the rasterization stage, or rasterized and the resulting
fragments merged into the frame buffer just as if they were generated
from geometric data.

All elements of OpenGL state, including the contents of the texture
memory and even of the frame buffer, can be obtained by an OpenGL
application.

.. Overview of Commands and Routines
Many OpenGL commands pertain specifically to drawing objects such
as points, lines, polygons, and bitmaps. Other commands control the
way that some of this drawing occurs, such as those that enable antialias-
ing or texturing. Still other commands are specifically concerned with
frame buffer manipulation. In this section, we briefly describe how all
the OpenGL commands work together to create the OpenGL process-
ing pipeline. Brief overviews are also given of the routines comprising
the OpenGL Utility Library (GLU) and the OpenGL extensions to the X
Window System (GLX).

OpenGL Processing Pipeline
Now that we have a general idea of how OpenGL works from previous
section, let us take a closer look at the stages in which data is actually

.  

processed and tie these stages to OpenGL commands. The following fig-
ure is a more detailed block diagram of the OpenGL processing pipeline.

For most of the pipeline, we can see three vertical arrows between
the major stages. These arrows represent vertices and the two primary
types of data that can be associated with vertices: colour values and
texture coordinates. Also the vertices are assembled into primitives, then
to fragments, and finally to pixels in the frame buffer. Here, we discuss
this progression in more detail.

Many OpenGL commands are simple variations of each other, dif-
fering mostly in the data type of arguments; some commands differ in
the number of related arguments and whether those arguments can be
specified as a vector or whether they must be specified separately in a
list. For example, if we use the glVertexf() command, we need to supply
x and y coordinates as -bit floating-point numbers; with glVertexsv(),
we must supply an array of three short (-bit) integer values for x, y,
and z. For simplicity, only the base name of the command is used in the
discussion that follows, and an asterisk is included to indicate that there
may be more to the actual command name than is being shown. For
example, glVertex*() stands for all variations of the command we use to
specify vertices.

Also the effect of an OpenGL command may vary depending on
whether certain modes are enabled. For example, we need to enable
lighting if the lighting-related commands are to have the desired effect of
producing a properly lit object. To enable a particular mode, we use the
glEnable() command and supply the appropriate constant to identify the
mode, for example, GL_LIGHTING. Here we do not discuss specific modes,
but we can refer to the reference page for glEnable() for a complete list of
the modes that can be enabled, OpenGL Blue Book. Modes are disabled
with glDisable().

Vertices
We explain the OpenGL commands that perform per-vertex operations
to the processing stages.

Input Data Wemust provide several types of input data to the OpenGL
pipeline:

Vertices Used to describe the shape of the desired geometric object. To
specify vertices,Weuse glVertex*() commands in conjunctionwith
glBegin() and glEnd() to create a point, line, or polygon. We can
also use glRect*() to describe an entire rectangle at once.

      

Edge flag By default, all edges of polygons are boundary edges. We use
the glEdgeFlag*() command to explicitly set the edge flag.

Current raster position This is specified with glRasterPos*(). The cur-
rent raster position is used to determine raster coordinates for pixel
and bitmap drawing operations.

Current normal A normal vector associated with a particular vertex de-
termineshowasurface at that vertex is oriented in three-dimensional
space. This affects how much light that particular vertex receives.
We use glNormal*() to specify a normal vector.

Current colour The colour of a vertex, together with the lighting con-
ditions, determine the final, lit colour. Colour is specified with
glColor*() if in RGBA mode or with glIndex*() if in colour index
mode.

Current texture coordinates Specified with glTexCoord*(), texture co-
ordinates determine the location in a texture map that should be
associated with a vertex of an object.

When glVertex*() is called, the resulting vertex inherits the current
edge flag, normal, colour, and texture coordinates. Therefore, glEdge-
Flag*(), glNormal*(), glColor*(), and glTexCoord*() must be called
before glVertex*() if they are to affect the resulting vertex.

Matrix Transformations Vertices and normals are transformed by the
modelview and projection matrices before they’re used to produce an
image in the frame buffer. We can use commands such as glMatrix-
Mode(), glMultMatrix(), glRotate(), glTranslate(), and glScale() to
compose the desired transformations, or we can directly specify matrices
with glLoadMatrix() and glLoadIdentity(). Use glPushMatrix() and
glPopMatrix() to save and restore modelview and projectionmatrices on
their respective stacks.

Lighting and Colouring In addition to specifying colours and normal
vectors, we may define the desired lighting conditions with glLight*()
and glLightModel*(), and the desired material properties with glMa-
terial*(). Related commands we might use to control how lighting
calculations are performed include glShadeModel(), glFrontFace(), and
glColorMaterial().

.  

Generating Texture Coordinates Rather than explicitly supplying tex-
ture coordinates, we can have OpenGL generate them as a function of
other vertex data. This is what the glTexGen*() command does. After
the texture coordinates have been specified or generated, they are trans-
formed by the texture matrix. This matrix is controlled with the same
commands mentioned earlier for matrix transformations.

Primitive Assembly Once all these calculations have been performed,
vertices are assembled into primitivesŮpoints, line segments, or polygons
together with the relevant edge flag, colour, and texture information for
each vertex.

Primitives
During the next stage of processing, primitives are converted to pixel
fragments in several steps: primitives are clipped appropriately,whatever
corresponding adjustments are necessary are made to the colour and
texture data, and the relevant coordinates are transformed to window
coordinates. Finally, rasterization converts the clipped primitives to pixel
fragments.

Clipping Points, line segments, and polygons are handled slightly dif-
ferently during clipping. Points are either retained in their original state,
if they are inside the clip volume, or discarded, if they are outside. If
portions of line segments or polygons are outside the clip volume, new
vertices are generated at the clip points. For polygons, an entire edge
may need to be constructed between such new vertices. For both line seg-
ments and polygons that are clipped, the edge flag, colour, and texture
information is assigned to all new vertices.

Clipping actually happens in two steps:

Application-specific clipping Immediately after primitives are assem-
bled, they are clipped in eye coordinates as necessary for any ar-
bitrary clipping planes we have defined for our application with
glClipPlane(). OpenGL requires support for at least six such
application-specific clipping planes.

View volume clipping Next, primitives are transformed by the projec-
tionmatrix (into clip coordinates) and clipped by the corresponding
viewing volume. This matrix can be controlled by the previously
mentioned matrix transformation commands but is most typically
specified by glFrustum()or glOrtho().

      

Transforming to Window Coordinates Before clip coordinates can be
converted towindow coordinates, they are normalized by dividing by the
value of w to yield normalized device coordinates. After that, the view-
port transformation applied to these normalized coordinates produces
window coordinates. We control the viewport, which determines the area
of the on-screen window that displays an image, with glDepthRange()
and glViewport().

Rasterization Rasterization is the process by which a primitive is con-
verted to a two-dimensional image. Eachpoint of this image contains such
information as colour, depth, and texture data. Together, a point and its
associated information are called a fragment. The current raster position
(as specified with glRasterPos*()) is used in various ways during this
stage for pixel drawing and bitmaps. As discussed below, different issues
arise when rasterizing the three different types of primitives; in addition,
pixel rectangles and bitmaps need to be rasterized.
Primitives

Wecontrol howprimitives are rasterizedwith commands that allowwe to
choose dimensions and stipple patterns: glPointSize(), glLineWidth(),
glLineStipple(), and glPolygonStipple(). Additionally, we can con-
trol how the front and back faces of polygons are rasterized with glCull-
Face(), glFrontFace(), and glPolygonMode().
Pixels

Several commands control pixel storage and transfer modes. The com-
mand glPixelStore*() controls the encoding of pixels in client mem-
ory, and glPixelTransfer*() and glPixelMap*() control how pixels are
processed before being placed in the frame buffer. A pixel rectangle is
specified with glDrawPixels(); its rasterization is controlled with glPix-
elZoom().
Bitmaps

Bitmaps are rectangles of zeros and ones specifying a particular pattern
of fragments to be produced. Each of these fragments has the same
associated data. A bitmap is specified using glBitmap().
Texture Memory

Texturing maps a portion of a specified texture image onto each primi-
tive when texturing is enabled. This mapping is accomplished by using
the colour of the texture image at the location indicated by a fragment’s
texture coordinates to modify the fragment’s RGBA colour. A texture
image is specified using glTexImageD() or glTexImageD(). The com-
mands glTexParameter*() and glTexEnv*() control how texture values
are interpreted and applied to a fragment.
Fog

.  

We can have OpenGL blend a fog colour with a rasterized fragment’s
post-texturing colour using a blending factor that depends on the distance
between the eyepoint and the fragment. Use glFog*() to specify the fog
colour and blending factor.

Fragments
OpenGL allows a fragment produced by rasterization to modify the cor-
responding pixel in the frame buffer only if it passes a series of tests. If it
does pass, the fragment’s data can be used directly to replace the existing
frame buffer values, or it can be combined with existing data in the frame
buffer, depending on the state of certain modes.

Pixel Ownership Test The first test is to determine whether the pixel in
the frame buffer corresponding to a particular fragment is owned by the
current OpenGL context. If so, the fragment proceeds to the next test. If
not, the window system determines whether the fragment is discarded
or whether any further fragment operations will be performed with that
fragment. This test allows the window system to control OpenGL’s be-
haviour when, for example, an OpenGL window is obscured.

Scissor Test With the glScissor() command, we can specify an arbi-
trary screen-aligned rectangle outside of which fragments will be dis-
carded.

Alpha Test The alpha test, which is performed only in RGBAmode, dis-
cards a fragment depending on the outcome of a comparison between the
fragment’s alpha value and a constant reference value. The comparison
command and reference value are specified with glAlphaFunc().

Stencil Test The stencil test conditionally discards a fragment based on
the outcome of a comparison between the value in the stencil buffer and
a reference value. The command glStencilFunc() specifies the compar-
ison command and the reference value. Whether the fragment passes or
fails the stencil test, the value in the stencil buffer is modified according
to the instructions specified with glStencilOp().

Depth Buffer Test The depth buffer test discards a fragment if a depth
comparison fails; glDepthFunc() specifies the comparison command. The
result of the depth comparison also affects the stencil buffer update value
if stenciling is enabled.

      

Blending Blending combines a fragment’s R, G, B, and A values with
those stored in the frame buffer at the corresponding location. The blend-
ing, which is performed only in RGBAmode, depends on the alpha value
of the fragment and that of the corresponding currently stored pixel; it
might also dependon theRGBvalues. We control blendingwith glBlend-
Func(), which allows we to indicate the source and destination blending
factors.

Dithering If dithering is enabled, a dithering algorithm is applied to the
fragment’s colour or colour index value. This algorithm depends only on
the fragment’s value and its x and y window coordinates.

Logical Operations Finally, a logical operation can be applied between
the fragment and the value stored at the corresponding location in the
framebuffer; the result replaces the current framebuffer value. We choose
the desired logical operation with glLogicOp(). Logical operations are
performed only on colour indices, never on RGBA values.

Pixels
During the previous stage of the OpenGL pipeline, fragments are con-
verted to pixels in the frame buffer. The frame buffer is actually organized
into a set of logical buffers—the colour, depth, stencil, and accumulation
buffers. The colour buffer itself consists of a front left, front right, back
left, back right, and some number of auxiliary buffers. We can issue com-
mands to control these buffers, and we can directly read or copy pixels
from them.

Frame Buffer Operations We can select into which buffer colour values
are written with glDrawBuffer(). In addition, four different commands
are used to mask the writing of bits to each of the logical frame buffers
after all per-fragment operations have been performed: glIndexMask(),
glColorMask(), glDepthMask(), and glStencilMask(). The operation of
the accumulation buffer is controlled with glAccum(). Finally, glClear()
sets every pixel in a specified subset of the buffers to the value specified
with glClearColor(), glClearIndex(), glClearDepth(), glClearSten-
cil(), or glClearAccum().

Reading or Copying Pixels We can read pixels from the frame buffer
into memory, encode them in various ways, and store the encoded result
in memory with glReadPixels(). In addition, we can copy a rectangle of

.  

pixel values from one region of the frame buffer to another with glCopy-
Pixels(). The command glReadBuffer() controls from which colour
buffer the pixels are read or copied.

Additional OpenGL Commands

Here, we briefly describe special groups of commands that were not ex-
plicitly shown as part of OpenGL’s processing pipeline. These commands
accomplish such diverse tasks as evaluating polynomials, using display
lists, and obtaining the values of OpenGL state variables.

Using Evaluators

OpenGL’s evaluator commands allow we to use a polynomial mapping
to produce vertices, normals, texture coordinates, and colours. These
calculated values are then passed on to the pipeline as if they had been
directly specified. The evaluator facility is also the basis for the NURBS
(Non-Uniform Rational B-Spline) commands, which allow us to define
curves and surfaces.

The first step involved in using evaluators is to define the appropri-
ate one- or two-dimensional polynomial mapping using glMap*(). The
domain values for this map can then be specified and evaluated in one of
two ways:

By defining a series of evenly spaced domain values to be mapped
using glMapGrid*() and then evaluating a rectangular subset of that grid
with EvalMesh*(). A single point of the grid can be evaluated using
glEvalPoint*().

By explicitly specifying a desired domain value as an argument to
glEvalCoord*(), which evaluates the maps at that value.

Performing Selection and Feedback

Selection, feedback, and rendering are mutually exclusive modes of op-
eration. Rendering is the normal, default mode during which fragments
are produced by rasterization; in selection and feedback modes, no frag-
ments are produced and therefore no frame buffermodification occurs. In
selection mode, we can determine which primitives would be drawn into
some region of a window; in feedback mode, information about primi-
tives that would be rasterized is fed back to the application. We select
among these three modes with glRenderMode().

      

Selection Selectionworks by returning the current contents of the name
stack, which is an array of integer-valued names. We assign the names
and build the name stack within the model

Feedback In feedback mode, each primitive that would be rasterized
generates a block of values that is copied into the feedback array. We
supply this array with glFeedbackBuffer(), which must be called before
OpenGL is put into feedback mode. Each block of values begins with
a code indicating the primitive type, followed by values that describe
the primitive’s vertices and associated data. Entries are also written for
bitmaps and pixel rectangles. Values are not guaranteed to be written
into the feedback array until glRenderMode() is called to take OpenGL
out of feedback mode. We can use glPassThrough() to supply a marker
that’s returned in feedback mode as if it were a primitive.

Using Display Lists
Adisplay list is simply agroupofOpenGLcommands that has been stored
for subsequent execution. The glNewList() command begins the creation
of a display list, and glEndList() ends it. With few exceptions, OpenGL
commands called between glNewList() and glEndList() are appended to
the display list, and optionally executed as well. (The reference page for
glNewList() lists the commands that can’t be stored and executed from
within a display list.) To trigger the execution of a list or set of lists,
use glCallList() or glCallLists() and supply the identifying number of a
particular list or lists. We can manage the indices used to identify display
lists with glGenLists(), glListBase(), and glIsList(). Finally, we can delete
a set of display lists with glDeleteLists().

Managing Modes and Execution
The effect of many OpenGL commands depends on whether a particular
mode is in effect. We use glEnable() and glDisable() to set such modes
and glIsEnabled() to determine whether a particular mode is set.

We can control the execution of previously issuedOpenGL commands
with glFinish(), which forces all such commands to complete, or glFlush(),
which ensures that all such commands will be completed in a finite time.

Aparticular implementation ofOpenGLmayallow certain behaviours
to be controlled with hints, by using the glHint() command. Possible
behaviours are the quality of colour and texture coordinate interpolation,
the accuracy of fog calculations, and the sampling quality of antialiased
points, lines, or polygons.

.  

Obtaining State Information
OpenGL maintains numerous state variables that affect the behaviour
of many commands. Some of these variables have specialized query
commands:

glGetLight()
glGetMaterial()
glGetClipPlane()
glGetPolygonStipple()
glGetTexEnv()
glGetTexGen()
glGetTexImage()
glGetTexLevelParameter()
glGetTexParameter()
glGetMap()
glGetPixelMap()

The value of the other state variables can be obtained with glGet-
Booleanv(), glGetDoublev(), glGetFloatv(), or glGetIntegerv(), as ap-
propriate. The reference page for glGet*() explains how to use these
commands. Other query commands we might want to use are glGetEr-
ror(), glGetString(), and glIsEnabled(). Finally, we can save and
restore sets of state variables with glPushAttrib() and glPopAttrib().

OpenGL Utility Library
The OpenGLUtility Library (GLU) contains several groups of commands
that complement the core OpenGL interface by providing support for
auxiliary features. Since these utility routines make use of core OpenGL
commands, any OpenGL implementation is guaranteed to support the
utility routines. Note that the prefix for Utility Library routines is glu
rather than gl.

Manipulating Images for Use in Texturing
GLU provides image scaling and automatic mipmapping routines to sim-
plify the specification of texture images. The routine gluScaleImage()
scales a specified image to an accepted texture size; the resulting image
can then be passed to OpenGL as a texture. The automatic mipmap-
ping routines gluBuildDMipmaps() and gluBuildDMipmaps() create
mipmapped texture images from a specified image and pass them to
glTexImage1D() and glTexImage2D(), respectively.

      

Transforming Coordinates
Several commonly used matrix transformation routines are provided.
We can set up a two-dimensional orthographic viewing region with glu-
OrthoD(), a perspective viewing volume using gluPerspective(), or a
viewing volume that’s centred on a specified eyepoint with gluLookAt().
Each of these routines creates the desired matrix and applies it to the
current matrix using glMultMatrix().

The gluPickMatrix() routine simplifies selection by creating a matrix
that restricts drawing to a small region of the viewport. If we render the
scene again in selectionmode after thismatrix has been applied, all objects
that would be drawn near the cursor will be selected and information
about them stored in the selection buffer.

If we need to determinewhere in thewindowan object is being drawn,
use gluProject(), which converts specified coordinates from object co-
ordinates to window coordinates; gluUnProject() performs the inverse
conversion.

Polygon Tessellation
The polygon tessellation routines triangulate a concave polygonwith one
or more contours. To use this GLU feature, first create a tessellation ob-
ject with gluNewTess(), and define callback routines that will be used
to process the triangles generated by the tessellator (with gluTessCall-
Back()). Then use gluBeginPolygon(), gluTessVertex(), gluNextCon-
tour(), and gluEndPolygon() to specify the concave polygon to be tessel-
lated. Unneeded tessellation objects can be destroyed with gluDeleteT-
ess().

Rendering Spheres, Cylinders, and Disks
We can render spheres, cylinders, and disks using the GLU quadric rou-
tines. To do this, we create a quadric object with gluNewQuadric(). To
destroy this object when we are done with it, we can use gluDelete-
Quadric(), then specify the desired rendering style, as listed below, with
the appropriate routine:

Whether surface normals should be generated, and if so, whether there
shouldbeonenormalpervertex, or onenormalper face: gluQuadric-
Normals(),

Whether texture coordinates shouldbegenerated: gluQuadricTexture(),

Which side of the quadric should be considered the outside and which
the inside: gluQuadricOrientation(),

.  

Whether the quadric should be drawn as a set of polygons, lines, or
points: gluQuadricDrawStyle(),

After we have specified the rendering style, simply invoke the rendering
routine for the desired type of quadric object: gluSphere(), gluCylin-
der(), gluDisk(), or gluPartialDisk(). If an error occurs during ren-
dering, the error-handling routine we have specified with gluQuadric-
CallBack() is invoked.

NURBS Curves and Surfaces
NURBS (Non-Uniform Rational B-Spline) curves and surfaces are con-
verted to OpenGL evaluators by the routines described in this section.
We can create and delete a NURBS object with gluNewNurbsRenderer()
and gluDeleteNurbsRenderer(), and establish an error-handling routine
with gluNurbsCallback().

We specify the desired curves and surfaces with different sets of rou-
tines like gluBeginCurve(), gluNurbsCurve(), and gluEndCurve() for
curves or gluBeginSurface(), gluNurbsSurface(), and gluEndSurface()
for surfaces. We can also specify a trimming region, which defines a sub-
set of the NURBS surface domain to be evaluated, thereby allowing we
to create surfaces that have smooth boundaries or that contain holes.
The trimming routines are gluBeginTrim(), gluPwlCurve(), gluNurb-
sCurve(), and gluEndTrim().

As with quadric objects, we can control how NURBS curves and sur-
faces are rendered:
Whether a curve or surface should be discarded if its control polyhedron

lies outside the current viewport,

What the maximum length should be (in pixels) of edges of polygons
used to render curves and surfaces,

Whether the projection matrix, modelviewmatrix, and viewport should
be taken from the OpenGL server or whether we will supply them
explicitly with gluLoadSamplingMatrices().

Use gluNurbsProperty() to set these properties, or use the default values.
We can query a NURBS object about its rendering style with gluGetNurb-
sProperty().

Handling Errors
The routine gluErrorString() is provided for retrieving an error string
that corresponds to an OpenGL or GLU error code. The currently de-
fined OpenGL error codes are described in the glGetError() reference

      

page. The GLU error codes are listed in the gluErrorString(), gluTess-
Callback(), gluQuadricCallback(), and gluNurbsCallback() reference
pages. Errors generated by GLX routines are listed in the relevant refer-
ence pages for those routines.

. GIMP

Introduction to the GIMP
We needed a software to create the textures for sari. We searched the
Internet to find a suitable software for our need. There are many like
CorelDraw CorelDraw but we wanted some free software. There are
many software available for this like ImageMagic ImageMagic, but we
found that GIMP is better than others in terms of simplicity and its variety
of features to manipulate the image.

GIMP GIMP is an acronym for GNU ImageManipulation Program. It
is a freely distributed program for such tasks as photo retouching, image
composition and image authoring.

It has many capabilities. It can be used as a simple paint program,
an expert quality photo retouching program, an online batch processing
system, a mass production image renderer, an image format converter,
etc..

GIMP is expandable and extensible. It is designed to be augmented
with plug-ins and extensions to do just about anything. The advanced
scripting interface allows everything from the simplest task to the most
complex image manipulation procedures to be easily scripted.

GIMP is written and developed under X on UNIX platforms. But
basically the same code also runs on MS Windows and Mac OS X.

Features and Capabilities
Here, we list main features of GIMP and what we can achieve with it.

Painting GIMP has full suite of painting tools including Brush, Pencil,
Airbrush, Clone, etc. It has sub-pixel sampling for all paint tools for
high quality anti-aliasing. It is extremely powerful gradient editor
and blend tool. It supports custom brushes and patterns.

System It has tile based memory management, so the image size is lim-
ited only by available disk space. It can virtually unlimited number
of images open at one time.

Advanced Manipulation It gives full alpha channel support. Its Layers
and channels, help to create an image in modular way, thus making

.  

it easier to edit it endlessly, without having to disturb previous stage
of created image. It allows to Undo/Redo multiple times but it is
limited only by disk-space.

Editable text layers It has transformation tools including rotate, scale,
shear and flip, selection tools including rectangle, ellipse, free, fuzzy
and intelligent, and advanced path tool doing bezier and polygonal
selections. It has transformable paths, transformable selections and
it allows to quickmask to paint a selection.

Extensible GIMP has a procedural database for calling internal GIMP
functions from external programs as in Script-fu, and has advanced
scripting capabilities like scheme, Python, or Perl. It has plug-ins
which allow for the easy addition of new file formats and new effect
filters. GIMP already has over  plug-ins available.

Animation GIMPcan load and save animations in a convenient frame-as-
layer format. It supportsMNG, FrameNavigator (inGAP, theGIMP
Animation Package), Onion Skin (in GAP, the GIMP Animation
Package), or Bluebox (in GAP, the GIMP Animation Package) .

File Handling File formats supported by GIMP are bmp, gif, jpeg, mng,
pcx, pdf, png, ps, psd, svg, tiff, tga, xpm, and many others. It can
load, display, convert, and save to many file formats. It supports
SVG path import/export.

Installation of GIMP on linux aswell as on anyWindows environment
is quite easy. It took around one hour to install and setup it. We used this
software to create the textures of Ang, Kath and Padar.

 

Texture Mapping

Texture is a physical attribute that characterizes all surfaces. It gives
information about the roughness and composition of the surface. It also
gives information about size, shape and density of the surface of the
object. To generate an image of such object showing all the details is an
intriguing problem in computer graphicsworld as the texture is a difficult
visual attribute to synthesize.

In the quest for more realistic imagery, one of the most frequent criti-
cisms of early, synthesized raster images was the extreme smoothness of
surfaces, they showed no texture, bumps, scratches, dirt, or fingerprints.
Reality demands complexity, or at least the appearance of complexity.
Texture mapping is a relatively efficient means to create the appearance
of complexitywithout the tediumofmodelling and rendering every three-
dimensional detail of a surface Heckbert [].

Texturemapping is a technique, which increases the visual complexity
of a scene without increasing its geometric complexity. The idea is that
the rendering systemmaps an image onto simple scene geometry tomake
objects look much more realistic than the underlying geometry.

The study of texture mapping is valuable because its methods are ap-
plicable throughout the computer graphics and image processing. Geo-
metric mappings are relevant to the modelling of parametric surfaces
in CAD and to general two-dimensional image distortions for image
restoration and artistic uses. The study of texture filtering leads into the
development of space variant filters, which are useful for image process-
ing, artistic effects, depth-of-field simulation, and motion blur Heckbert
[].

In , Catmull introduced texture mapping and since then a great
deal of work has been devoted towards the improvement of the quality
of the generated images and the reduction of the computational cost. In
general, the problem of texture mapping can be stated as follows: given
an arbitrarily curved surface and a texture domain, a (at least locally



    

inevitable) mapping between these two domains. The texture domain
is one-dimensional, two-dimensional or three-dimensional and may in-
clude colour, roughness or transparency entries Azariadis and Aspra-
gathos [].

Whenmapping an image onto an object, the colour of the object at each
pixel is modified by a corresponding colour from the image. In general,
obtaining this colour from the image conceptually requires several steps
Heckbert []. The image is normally stored as a sampled array, so a
continuous image must first be reconstructed from the samples. Next,
the image must first be warped to match any distortion in the projected
object being displayed. The warped image is then filtered to remove
high frequency components that would lead to aliasing in the final step:
sampling again to obtain the desired colour to apply to the pixel being
textured Haeberli and Segal [].

There are several methods in use for texture mapping and several
different approacheshavebeen suggested to achievehighquality in image
synthesis. In the next section we describe them as they got developed in
years.

Though one strives to add reality to images produced on the screen, it
is not that simple. We would like to quote from Firebaugh, “Visual forms
- lines, colours, proportions, etc. - are just as capable of articulation,
that is, of complex combinations, as words but the laws that govern this
sort of articulation are altogether different from the laws of syntax that
govern language They do not present their constituents successively,
but simultaneously, so the relations determining a visual structure are
grasped in one act of vision.” This is themotivation and also inspiration to
all researchers in computer graphics field for generating realistic images.

Texture mapping is an important technique for improving the reality
of objects rendered on computer. Using texture mapping techniques, the
appearance of detail can be added to an object without increasing the
amount of geometry needed to model the object. We give here a brief
overview of texture mapping basics and some of the methods. Please see
Athale and Stifter [] for further details.

. What is texture mapping?
Every object in nature has a specific size, shape, colour, density and
texture. To generate its image on the computer, one has to consider each
of the above characteristics. The characteristics like size and shape of the
object are easy to manipulate on the screen than its texture. For example,
a stone or a piece of wood has different consistency at each point. It is not
smooth at every point, or have definite structure.

.    

A texture means a detailed pattern that is repeated many times to tile
the plane, or more generally, a multi-dimensional image that is mapped
to a multi-dimensional space. Texture mapping means the mapping of
a function onto a surface in three-dimensional space Heckbert [].
The domain of the function can be one, two, or three-dimensional space.
This can be represented by an array or a mathematical function. One-
dimensional texture can simulate rock layer two-dimensional texture can
represent waves, and three-dimensional texture can represent wood. In
other words, texture mapping is the process of shaping a texture image and
applying it to the surface of a geometric primitive.

. Texture Mapping Methods
The basic idea of texture mapping methods is that the rendering system
maps an image onto simple scene geometry to make objects look much
more realistic than the underlying geometry. We describe here some of
the basic methods for texture mapping Bitter [].
(Flat) Texture Mapping: Mapping the texture onto the scene objects

is done at the end of the rendering process. Once it is determined which
pixels are covered by the object on the screen each square Srepresenting
one of those pixels is back-projected onto the three dimensional object.
Then, in a second transformation, the area on the texture image A corre-
sponding to S is found. The colour of S is assigned to be some average
of all pixels in A. In order to find this average a number of re-sampling
filters can be used.
BumpMapping: Flat textures just modify the surface colours, but not

the light reflection patterns. Bumpmaps have for every pixel also a vector
or an index to a vector stored, which is used to perturb the surface normal
at the corresponding location of the textured object. In the shading stage
of the rendering pipeline Phong shading has to be used. Thus for each
screen pixel the illumination equation is evaluated, each time with a new
normal slightly modified due to the bump map. The effect is that rough
surfaces look a lot more realistic most of the time. Along the edges of an
object it is still visible that the underlying geometry is actually flat.
Reflection Mapping: This technique requires two passes through the

rendering pipeline. First the viewpoint is transformed to the virtual
projection centre inside the object O to be textured. Now the scene of all
other objects is rendered and the resulting image is stored as texture image
ofO. In the second pass the scene is rendered with the original viewpoint
and the Surface of O will now show the reflection of its environment.
Displacement Mapping: This method is very similar to the bump

mapping. Just in this case the vectors represent perturbations of the

    

normal vectors and the actual surface. So now even the edges of curved
objects can appear a lot more complex than the geometric representation.
The price for this added realism is the need to apply the texture map in
object space before visible surface determination.
MIP mapping (Multo In Parvo): This method stores texture maps

of multiple resolutions efficiently. This Store RGB components in three
quarters of the MIP map and four times smaller averaged versions of the
RGB components in the remaining quarter. It is then repeated recursively
until the remaining quarter is only one pixel. Computing the colour for a
screen pixel of a texture mapped object is done by:

• finding the area on the texture map affecting the pixel,

• selecting the two resolutions of the MIP map in which four pixel
squares cover just a little more or less than the corresponding screen
pixel,

• tri-linearly interpolate the MIP map pixel values to get the screen
pixel colour.

The researchers have developed variousmethods for texturemapping
since the introduction of the texturemappingmethods in  byCatmull.
This is done using sophisticated hardware as well using software. For
hardware, consider Fang and Chen []; Gelb, Malzbender, and Wu
[, ]. We here concentrate only on texture mapping methods
using software.

. Applications of Texture Mapping Methods
Texture Mapping methods are used in variety of applications to improve
the quality of rendered images. We here give some of the widely known
applications in brief.

In basic texture mapping, an image is applied to a polygon (or some
other surface facet) by assigning texture coordinates to the polygon’s
vertices. These coordinates index a texture image, and are interpolated
across the polygon to determine, at each of the polygon’s pixels, a texture
image value. The result is that some portion of the texture image is
mapped onto the polygon when the polygon is viewed on the screen.
Typical two-dimensional images in this application are images of bricks
or a road surface (in this case the texture image is often repeated across
a polygon); a three-dimensional image might represent a block of marble
from which objects could be “sculpted”.
ProjectiveTextureMapping: Ageneralizationof this techniqueprojects

a texture onto surfaces as if the texture were a projected slide or film. In

.      

this case, the texture coordinates at a vertex are computed as the result
of the projection rather than being assigned fixed values. This technique
may be used to simulate spotlights as well as the re projection of a pho-
tograph of an object back onto that object’s geometry.

Projective textures are also useful for simulating shadows. In this
case, an image is constructed that represents distances from a light source
to surface points nearest the light source. This image can be computed
by performing Z-buffering Mayr [-] from the lights point of view
and then obtaining the resulting Z-buffer. When the scene is viewed
from the eye-point, the distance from the light source to each point on a
surface is computed and compared to the corresponding value stored in
the texture image. If the values are (nearly) equal, then the point is not
in shadow otherwise it is in shadow. This technique should not use MIP-
mapping, because filtering must be applied after the shadow comparison
is performed.
ImageWarping: ImagewarpingHeckbert []maybe implemented

with texture mapping by defining a correspondence between a uniform
polygonal mesh (representing the original image) and a warped mesh
(representing the warped image). The warp may be affine (to generate
rotations, translations, shearing, and zooms). The points of the warped
mesh are assigned to the corresponding texture coordinates of the uni-
formmesh, and themesh is texturemappedwith the original image. This
technique allows interactive image warping which could be easily con-
trolled. The technique can also be used for panning across a large texture
image by using a mesh that indexes only a portion of the entire image.
Transparency Mapping: Texture mapping may be used to lay trans-

parent or semi-transparent objects over a scene by representing trans-
parency values in the texture image as well as colour values. This tech-
nique is useful for simulating clouds and trees for example, by drawing
appropriately textured polygons over a background. The effect is that the
background shows through around the edges of the clouds or branches
of the trees. Texture map filtering applied to the transparency and colour
values automatically leads to soft boundaries between the clouds or trees
and the background.
Surface Trimming: This technique is similar to transparency Map-

ping. This may be used to cut holes out of polygons or perform do-
main space trimming on curved surfaces. An image of the domain space
trimmed regions is generated. As the surface is rendered, its domain
space coordinates are used to reference this image. The value stored in
the image determines whether the corresponding point on the surface is
trimmed or not.

 

Cloth Modelling

We all thinkwe knowwhat clothmeans since we are constantly in contact
with it as clothing and in our homes. Because cloth is so much a part of
our daily lives we take it for granted—our minds do not question this
wonderful substance and the myriad of guises it comes in. It is really
very deceptive, simple word but it conveys a lot of information. It is
something we can better understand simply using our senses. We do not
need any complex theory to understand its structure. we simply have
to see the cloth and touch it. We know the saying, “A Picture is worth
a thousand words.” Same way, feeling the touch of the cloth will tell us
things which will need many words to explain.

Figure . gives a hint of the complex underlying structure of cloth and
how much this structure can vary between fabrics. How is cloth formed
or made? What gives one kind of cloth a particular set of characteristics
not found in another? These questions may not occur to the average
person, but when one models and simulates cloth for computer graphics,
answers to these questions are of great importance. As one obtains a
deeper knowledge of cloth, a whole new world opens up that has many
surprises and questions in it.

To the fashion or textile designer, cloth has many nuances in addition
to its basic function of covering a body or any object like a table or a
chair. Its importance to the fashion designer cannot be overestimated
since so often it is said that the inspiration for a garment comes from the
cloth. Designers often develop a clothing design in silhouette, much like
an architect starts with a set of floor plans. but even then, nature of the
cloth used is of prime importance in determining the cutting and shaping
of the garment. It was the late, great fashion designer Balenciaga who is
credited with saying that “One most never annoy a fabric. Fabrics have
their own life and breath like human beings.”

Textile or cloth comes in a variety of types or categories, based on
how it is constructed. The two most common types for use in apparel are



    

Representation of Woven Fabrics
Donald H. House

Visualization Laboratory
Texas A&M University

David E. Breen
Computer Graphics Laboratory

California Institute of Technology

1 Introduction

Cloth is a mechanism, not a material.

This phrase, told to us by long time fabric scientist John Skelton, has had an enduring effect on how
we model cloth for computer graphics. What John meant is that, quite simply, the behavior of cloth
is determined by the mechanical interactions between its various elements. Although we can say
this about any material by going down to the scale of its crystaline or molecular structure, in cloth
the statement holds at a scale only slightly smaller than that of normal observation. This large-scale
structure of woven cloth is clearly seen in the two low-magnification samples shown in Figure 1.

Figure 2a is a more schematic view of a plain weave fabric. It consists of a set of warp yarns,
with a perpendicular set of weft yarns woven over and under the warp yarns. As the fabric moves,
the yarns collide with each other, bend over each other, and can even slip with respect to each
other. Attempts to model the interactions of these discrete elements using a continuum approach
necessarily involve approximations [5, 8, 11, 13, 15]. Likewise, modeling all of these elements and
their interactions in detail is not practical.

However, the particle representation shown in Figure 2b can be used as a reasonable representa-
tion of the structure of cloth if we assume that the weave is tight enough and the loads on the cloth
are light enough, that slippage does not occur between the yarns at their crossings. These assump-
tions are very good ones for most of the woven fabrics from which clothing is made, and for most of
the uses to which clothing is put. The mechanical interactions that can still take place are stretching
of the yarns between crossings, out of plane bending of the yarns between crossings, trellising or in
plane bending of the yarns between crossings, and twisting of the yarns between crossings.

The weave model of Figure 2b can be thought of as a system of particles, each representing
a yarn crossing point. The particles interact with each other in ways that are determined by the
mechanics of the yarns between crossings. These interactions can, in turn, be conveniently char-
acterized by a set of strain energy functions, one for each of stretching, bending, trellising, and

a) cotton b) wool

Figure 1: Low magnification views of samples of woven cloth

B-1

Representation of Woven Fabrics
Donald H. House

Visualization Laboratory
Texas A&M University

David E. Breen
Computer Graphics Laboratory

California Institute of Technology

1 Introduction

Cloth is a mechanism, not a material.

This phrase, told to us by long time fabric scientist John Skelton, has had an enduring effect on how
we model cloth for computer graphics. What John meant is that, quite simply, the behavior of cloth
is determined by the mechanical interactions between its various elements. Although we can say
this about any material by going down to the scale of its crystaline or molecular structure, in cloth
the statement holds at a scale only slightly smaller than that of normal observation. This large-scale
structure of woven cloth is clearly seen in the two low-magnification samples shown in Figure 1.

Figure 2a is a more schematic view of a plain weave fabric. It consists of a set of warp yarns,
with a perpendicular set of weft yarns woven over and under the warp yarns. As the fabric moves,
the yarns collide with each other, bend over each other, and can even slip with respect to each
other. Attempts to model the interactions of these discrete elements using a continuum approach
necessarily involve approximations [5, 8, 11, 13, 15]. Likewise, modeling all of these elements and
their interactions in detail is not practical.

However, the particle representation shown in Figure 2b can be used as a reasonable representa-
tion of the structure of cloth if we assume that the weave is tight enough and the loads on the cloth
are light enough, that slippage does not occur between the yarns at their crossings. These assump-
tions are very good ones for most of the woven fabrics from which clothing is made, and for most of
the uses to which clothing is put. The mechanical interactions that can still take place are stretching
of the yarns between crossings, out of plane bending of the yarns between crossings, trellising or in
plane bending of the yarns between crossings, and twisting of the yarns between crossings.

The weave model of Figure 2b can be thought of as a system of particles, each representing
a yarn crossing point. The particles interact with each other in ways that are determined by the
mechanics of the yarns between crossings. These interactions can, in turn, be conveniently char-
acterized by a set of strain energy functions, one for each of stretching, bending, trellising, and

a) cotton b) wool

Figure 1: Low magnification views of samples of woven cloth

B-1

F .: Magnified cloth samples

woven and knits. Based on a number of factors, woven cloth can appear
hard or supple or any degree in between. It can be shiny or dull, textured
or flat, rough or smooth, compact or open. A cloth can have many layers
and still be one fabric. It can have a puckered effect with deep shadows.
It can hold a shape so rigid that it can stand by itself or be so drapery
that a garment have a distinct woven pattern or a printed pattern or both.
It can demonstrate a combination of many qualities or express a quiet,
simple idea.

What gives a cloth all of these possibilities? It is a combination of
factors that includes the yarns that make up the cloth and how these
yarns are interlaced or woven in a pattern called a weave structure. When
a fabric is being designed, decisions are made as to how firm or loose
the fabric will be. The final cloth has a certain look and a hand. The look
of the fabric is its appearance to the eye—what we see when we enter a
store and are drawn to a certain garment or bolt of fabric. The term hand
pertains to how the fabric feels as we pick it up and lightly crush it in our
hand. “Is it crisp, soft, or limp?” is one of the more common questions a
fabric user will ask.

The look and hand do not always tell the same story; for example,
sometimes the look on the printed page of a catalogue can be flowing,
whereas in the hand the fabric is somewhat brittle. There are also fabrics
that lookopenandairy andyet inhandare extremelyheavy. An illustrator
depicting a fabric tries to capture not only the look of a fabric but also
ideally some indication or hand.

Cloth is woven from yarns or threads. The words yarn and thread
are often used interchangeably, and popular definitions are that yarn is
heavier than thread and thread is finer than yarn. To be more precise,
yarn is a group of loose fibres or filaments that have been spun or twisted
together to form a continuous strand. Thread starts out as yarn but is
usually twistedwith another yarn to give it strength for a specific purpose.

Cloth iswoven on a device called a loom. Thewoven cloth is composed
of two sets of yarns. On the loom, one set of yarns is placed on the loom
and is called the warp. During weaving, the warp is held under tension
and its yarns are spaced parallel to each. The second set of threads is



Representation of Knit Fabrics
or

— the art of knitted fabrics —
W. Straßer
WSI/GRIS

University of Tübingen

B. Eberhardt
iMAGIS

University of Grenoble

1 Introduction

For thousands of years, man has been involved in the creation of textiles, culminating in the current,
extensive knowledge of how to form many, varied patterns and textures from a single thread. Such
textiles are now created on sophisticated, high-performance machines. However, while the textile
industry has made many technological advances in production, the marketing of the products re-
mains a costly and time consuming process. Individual samples must still be physically produced
and are contingent upon yarn availability. Machines must also be removed from production in order
to review each sample. These difficulties could be largely alleviated by the development of textile
computer models (virtual reality). The Computer Graphics industry has a tremendous opportunity
to enhance the textile industry, simplifying and accelerating the production and marketing process
and thus minimizing costs. The development of such models would also enrich the virtual world in
general, creating a more realistic representation of textiles.

Figure 1: Woven and knitted (Courtesy of Stoll-Deutschland) textile.

Although research in computer graphics suitable for textiles would undoubtedly be beneficial,
only limited work has been done in the area, with an emphasis on modeling and rendering the
macroscopic structure of woven textiles, e.g. Breen/House(et. al.) [1], Terzopoulos [2], Thalmann
[3],and Weil [4], who considered a purely geometrical approach. Draping techniques have also been
summarized by Ng and Grimsdale in their paper “Computer graphics techniques for modelling

F-1

Representation of Knit Fabrics
or

— the art of knitted fabrics —
W. Straßer
WSI/GRIS

University of Tübingen

B. Eberhardt
iMAGIS

University of Grenoble

1 Introduction

For thousands of years, man has been involved in the creation of textiles, culminating in the current,
extensive knowledge of how to form many, varied patterns and textures from a single thread. Such
textiles are now created on sophisticated, high-performance machines. However, while the textile
industry has made many technological advances in production, the marketing of the products re-
mains a costly and time consuming process. Individual samples must still be physically produced
and are contingent upon yarn availability. Machines must also be removed from production in order
to review each sample. These difficulties could be largely alleviated by the development of textile
computer models (virtual reality). The Computer Graphics industry has a tremendous opportunity
to enhance the textile industry, simplifying and accelerating the production and marketing process
and thus minimizing costs. The development of such models would also enrich the virtual world in
general, creating a more realistic representation of textiles.

Figure 1: Woven and knitted (Courtesy of Stoll-Deutschland) textile.

Although research in computer graphics suitable for textiles would undoubtedly be beneficial,
only limited work has been done in the area, with an emphasis on modeling and rendering the
macroscopic structure of woven textiles, e.g. Breen/House(et. al.) [1], Terzopoulos [2], Thalmann
[3],and Weil [4], who considered a purely geometrical approach. Draping techniques have also been
summarized by Ng and Grimsdale in their paper “Computer graphics techniques for modelling

F-1

F .: Woven and knitted textiles and detail of a knit

horizontally interlaced into the warp threads. The horizontal threads are
called theweftorfilling (sometimes thewoof, a term that hasbecomearchaic
today). The final look and hand of the woven fabric is an integration of
the characteristics of the warp yarns and the weft yarns, and how they
are interlaced. Warp yarns by themselves do not totally control the end
product. They need the weft and a weave structure to complete the
picture. Thus, the textile designer must make a number of choices, all of
which will affect the final cloth.

Knit fabric are complex and has more general structure than woven
fabric. Knits are very important to designers and textile industry, be-
ing used whenever comfort and insulation are required. Unlike woven
textiles, which consist of interlaced weft and warp yarns, knits are con-
structed by the interleaving of loops. The difference between these fabric
types are seen in two samples at the top of the Figure .. The more
magnified knit sample at the bottom of the Figure . clearly shows the
interlocking loops inherent to the structure of the knits. Various combi-
nations of these loops can produce an almost infinite variety of designs.
Knitted fabrics also drape differently from woven textiles, allowing for
the creation of endless new looks. These design considerations, along
with the wide variety of knitting modules available, make knits vital to
the textile industry, and thus deserving of study. Secondly, the prob-
lems specific to knitted materials are muchmore complex than for woven
materials, so they are, therefore, a more general model of textiles. Fi-
nally, the micro-structure of knitted fabrics has rather pronounced three
dimensional patterns.

What are the differences in a more physical sense between knitted
and woven materials? From the representative samples of knitted fabric
in the upper right figure Figure ., one can see that for knits we have
to deal with a highly anisotropic material. The mass distribution on the

    

textile varies greatly over different areas of the surface. Moreover, the
interleaving loops have an inherent tendency to slip and interact with
each other while the fabric is worn. with woven textiles, this type of
behaviour is much less evident.

. Cloth from a computer graphics point of
view

Thenameof the fabric usually forms an instant picture in textile designer’s
mind of the type of the fabric, how it was constructed, and its inherent
qualities based on the construction. This is the ideal to strive for in
computer animation systems dealing with woven textiles, that this type
of information would be embodied in the system. Shapes are easy to
get on the computer screen but in life it is the fabrics that will ultimately
decide the shapes and volumes of garments.

An animator should be aware of modern textiles that create new prob-
lems and also new possibilities for the animator. The current age of
techno-textiles means that even for experienced textile designers nothing
remains as it started out. Not only are finishing techniques making new
and elaborate fabric surfaces, but the use of new yarns is a new learning
experience for the textile designer. For example, whowould have thought
a few years ago that stainless steel would become a new fibre that creates
a surface unique to itself.

As we said in the beginning, an acquaintanceship with fabric beyond
reading is necessary. Simply looking at swatches on the Internet does
not help, we have to experience of running our hand over the surface of
a velvet or a tussah silk—or picking it up and crushing it in our hands.
This experience leads us to understand the cloth scientifically. After this
brief overview of cloth, we turn to the modelling of cloth, how textile en-
gineers thought about it and how computer graphics community viewed
it. Here, we referredHouse and Breen [] to summarise different cloth
modelling methods approaches and how the research in cloth modelling
area evolved. We also referred the tutorial on cloth modelling meth-
ods, Karthikeyan and Ranganathan, which is a good introduction for the
beginners in this field.

. Survey of cloth modelling methods
The research for cloth modelling began around s. In the beginning
only the textile engineerswereworking in this field but around s even
computer graphics community started taking interest in it. While the tex-

.      

tile engineers were interested in mechanical properties of the cloth, the
computer graphics community was interested in using cloth structures
for the computer-generated images and animation. The goals of these
two groups were different, and therefore they each focus on different
aspects of the same problem. The members of the textile community
look at woven cloth as an engineering material. The perspective has
led them to measure and model cloth from a mechanical, engineering
point of view, and they spent much time on developing devices that mea-
sure conventional material properties in cloth. Their modelling efforts
were focused on developing models that attempted to explain and pre-
dict the highly non-linear behaviour of cloth. Another significant area
of textile mechanics research focuses on modelling the micro-mechanical
relationships occurring at thread crossings. Around late s, textile
community began to apply this fundamental understanding of cloth me-
chanical behaviour to the problem of the predicting the large-scale shape
and structure of cloth objects. By this time, the computer graphics com-
munity, motivated by the desire to produce images of ever-increasing
complexity had already begun to develop simple models that could pro-
duce geometric structures that resembled cloth. The goal of this work
was to develop models that reproduce the look of the cloth, within an
efficient computational framework. Developers in the computer graph-
ics community were generally interested in creating the simplest model
possible that will produce results that appear realistic or acceptable to the
average observer. Thus, producing physically accurate and predictive
models had never been their goal. They simply wanted their pictures look
right.

Cloth modelling research as a whole may be placed into three broad
categories: modelling the geometric-mechanical structures occurring at
yarn crossing, modelling the mechanics of cloth with continuous elastic
sheets and rods, and modelling the macroscopic geometric features of
cloth. Peirce presented the first yarn-level structural model of cloth. Over
the years hismodelwas expanded and enhancedwith the addition of new
geometric features and force calculations. His basic approach inspired
other low-level structural models. Much work has been focused on mod-
elling cloth with continuous elastic structures. This approach attempted
to apply elasticity theory to the problem of predicting the deformation
of cloth. Another modelling strategy took a more geometrical approach.
One example involves modelling the macroscopic geometric features of
cloth and relating these features to external forces and conditions. Most
recently the computer graphics community has focused on simulating the
behaviour of a piece of a cloth, as well as a complete set of clothing, as it
interacts with its environment. In following sections, we will review the
approaches taken to model the cloth by textile engineers and computer

    

graphics community.

. Contributions of the textile community

.. Peirce model
F.T. Peirce was the first pioneer in cloth modelling research. In the mid-
s, he developed and analysed a basic modelling cell of fabric geome-
try, dealing with the geometric relationships among yarns at a yarn cross-
ing. The model consisted of two cross-section constrained by a third yarn
segment running perpendicular to the cross-sections. The modelling cell
would be used to analyse fabric yarn crossings in both the warp and weft
direction. Given that the Peircemodel was strictly based on the geometric
relationships, it could only be applied to a limited set of problems. The
model was most useful for determining the weaveability of a particular
fabric structure. This involved analysing the jammed condition of a fabric,
or in other words, the state of maximum yarn packing. This, a fabric can
be designed to have a particular yarn density and the Peirce model can
help to determine if the density is geometrically possible.

.. Strain energy methods
Strain energy methods attempted to model the parameters and struc-
tures of cloth by creating and minimizing equations that define the strain
energy in a fabric. Strain energy methods fall into two categories, low-
level structural models and high-level continuum models. They seem to
have been developed in response to the complexity and intractability of
approaches, based on Peirce model and improved later. The low-level
structural models were developed once it was realized that force-based
analysis of more realistic forms of the Peirce model was impractical. The
continuum based strain energy models were explored once the limita-
tions of applying the conventional theory of elastic plates and shells to
fabric mechanics was understood.

Low-level structural models
In the late s, S. De Jong and R. Postle presented an elegant general

theory of the elastic behaviour of fabrics that is based on modelling the
shape of deforming yarns. They assumed that yarns have simple elastic
deformation properties and that any fabric structure consisting of these
yarns comes to equilibrium in a minimum strain energy configuration.
By focusing on the strain energy of just the yarns, their approach be-
came independent of overall yarn structure, freeing it from special case
analysis. They broke down the total strain energy of a yarn into four

.      

components, bending, torsion, lateral compression, and longitudinal ten-
sion, based on the curvature, twist, and extension of the yarn geometry.
A unit modelling cell was considered that not only contains the yarns
but also the constraints on the yarns and other external potentials (e.g.,
gravity). The total energy of the complete system was then minimized
by applying methods from optimal control theory. Lagrange multipliers
were introduced for the constraint equations, a Hamiltonian for the sys-
tem was defined, and the minimization process for the constrained yarn
energy was then transformed into a minimization of an unconstrained
system. They applied their model to the problem of predicting the load-
extension, yarn-decrimping, and bending rigidity properties of several
materials and produced reasonable results as compared to actual fabrics.

High-level continuum models
In the late s, J. Amirbayat and J.W.S. Heartle proposed an energy-

basedmethod formodelling the large scale deformations of a thin flexible
sheet. They highlighted several limitations that arosewhile applying con-
ventional elasticity-based techniques to modelling. They stated that thin
sheet theorywas only a collection of special-case analyses derived for spe-
cific, simple three dimensional geometries, implying that it was not well
suited to modelling the arbitrary and complex geometrise of buckling
cloth. Furthermore, more elasticity-based techniques were developed
for small strains and small displacements, which could not be assumed
for most cloth structure. Finally, in cloth there was no direct connec-
tion between its in-plane and out-of-planemechanical properties, in stark
contrast to the assumptions made for continuous sheet and films. Given
these limitations, and the assumption that the cloth can bemodelled as an
isotropic Hookean material, Amirabayat and Heartle developed a strain
energy model of a cloth sheet. The strain energy function consisted of
five components: the energy due to external normal or frictional forces,
the bending energy integrated over single and double curvature zones,
the membrane strain energy, the gravitational potential energy, and ad-
ditional energy terms reflecting the aerodynamic, electrostatic or other
forces. They applied their strain energymodel to the study of a three-fold
crow’s foot buckling elementwhich they suggestedwas a fundamental ele-
ment of more complex buckling and folding configuration. This buckling
element was broken in two zones. The central zone was a dome of double
curvature, a unique type of deformation found in cloth. Radiating out
from this dome were three regions of single curvature. They developed
an experimental apparatus that reproduced the crow’s foot element. It was
used to test several sheet materials and to compare their final equilibrium
configuration with those generated by the model. They claimed that the
measurements produced from their experiment device supported and

    

validated the basic principles of their strain energy approach.

.. Elasticity-based methods
Another significant area of research in fabric modelling has been the ap-
plication of the theory of elasticity, continuum solid mechanics and finite
element techniques to modelling the mechanical properties of cloth. In
, W.F. Kilby applied elasticity theory to modelling of woven fabrics.
He developed planer stress-strain relationships for a simple trellis using
a conventional elasticity-based analysis. He assumed that fabric can be
modelled with a rectilinear trellis in which the elements are pivoted to-
gether at their intersection points, but do not pass under and over one
another. For small strains in the plane, he went on to show that the
stress-strain relationships are identical with those for an anisotropic elas-
tic lamina that does not display Poisson effect. From his equations he
predicted the behaviour of the Young’s modulus as a function of angle
across a woven cloth’s surface. He showed that his theoretical model
compiles with a set of experimental data. He admitted though that, in
general, the mechanical behaviour of cloth was non-linear and hysteric,
but he showed that for small strains the planer behaviour of woven fabric
was essentially linear and elastic.

. Contributions of the computer graphics
community

In s, computer graphics community became interested in cloth mod-
elling. They focused mainly on the problem of simulating the complex
shapes anddeformations of fabric and clothing in three dimensions. Their
research can be divided into geometric and physically based approaches.

.. Geometric approaches
In , J. Weil defined a geometric approach that approximates the folds
in a constrained piece of square cloth. His approach used a two-step
process to model a rectangular cloth structure hanging from several con-
straint points. The cloth structure was modelled topologically as a two
dimensional grid of three dimensional geometric points. The first step
recursively connected constraint points, which held up the cloth, with
catenary curves as an initial approximation. The curves have the form

y =
a
2
(ex/a + e−x/a) = a cosh

(x
a

)

.       

The grid point lying between the constraint points were placed on the
three dimensional catenary curves. When two curves cross, but do not
intersect at the same point in space, the lower curve is eliminated. New
constraint points and catenary curves are then added until all points on
the catenary curves liewithin the convex hull of the constraint points. The
second pass used a relaxation technique to enforce distance constraints
between all grid points in order to create smooth cloth-like folds in the
rectangular grid. Weil modelled with a second-order distance constraint.
He also included a rendering technique where the cloth surface was sub-
sequently modelled as a collection of cylinders.

.. Physically based approaches

Mass and spring models
In , D.R.HaumannandR.E. Parent simulated simple cloth-like objects
within their behavioural test bed. They were interested in determining
how complex global phenomena may be synthesized from simple local
interaction rules acting over a large collection of interconnected actors.
Towards that end, they developed an object-oriented environment with
a library of simple physically based actors. Their actors included a point
mass, environmental forces, a spring connecting two point masses, a
hinge that connects the two triangles formed by four point masses, and
aerodynamic drag and wind actors. Polygonal models consisting of tri-
angles can be easily covered into a collection of interconnected actors, by
converting each vertex into a point mass, each edge into a spring, and
each set of adjacent faces into a hinge.Given initial conditions and en-
vironmental forces, animations of complex physically based motion can
be calculated by having the actors respond to the resultant forces and
torques based on Newton’s laws of motion. They dis not claim that their
approach accurately models woven cloth, but merely some kind of de-
formable surface. Nevertheless, using their test bed they created several
animations including a flag weaving and curtains blowing in a breeze.
A few years later J.A. Thingvold and E. Cohen presented extension to
Haumann and Parent’s work, by applying similar behavioural actors, not
to the vertices of a polygonal model, but to the control points of a B-spline
surface. They also developed techniques that allow for subdivision of
the surface and the physically based actors in areas of high curvature.
Their method produced cloth-like surfaces, but it also suffered from the
same deficiencies as Haumann and Parent’s when it came to modelling
the mechanical behaviour of woven cloth.

In , Provot described a mass and spring system, similar to Hau-
mann and Parent’s, which included spring configuration meant specifi-

    

cally to model cloth. The mass particles, arranged in a rectilinear grid are
connected with the three types of springs.These are

 structural springs that connect nearest-neighbour particles along
thread lines,

 shear springs that connect nearest-neighbour along diagonal, and
 flexicon springs that connect a particle with its second neighbour

along thread lines.
Provot calculated the dynamic behaviour of the springs in order to sim-
ulate a cloth hanging from two points, and a weaving flag. A heuris-
tic method, reminiscent of a method developed by D.H. House and
D.E. Breen was presented which first takes a step in time based on the
dynamics of the system, then adjusts the positions of the particles that
have violated local distance constraints. This work is give in the article
Provot. The enforcement of distance constraints eliminated the unaccept-
able elongation generally found near fixed model points in elastic model.
Removing the elongations made these kinds of models less stretchy and
more cloth-like.

Elasticity-based models
In , C.R. Feynman simulated some of the mechanical properties of
cloth defining a set of energy functions over a two dimensional grid of
three dimensional points. The total energy of his cloth model contained
tensile strain, bending and gravity terms. He minimized the energy of
the grid with a stochastic technique, and a multigrid method. Feynman
assumed that cloth is a continuousflexiblematerial andderivedhis energy
functions from the theory of elastic shells. His energy functionswere only
based on the distance between points and a simple measure of curvature.
The strain energy was defined as

Es =
E

1− ν2 (u2
xx − u2

yy) +
2νE

1− ν2 uxxuyy

where E is Young’s modulus, ν is Poisson’s ratio and uii is the strain. The
energy of bending was defined as

Eb(S) =
∫ vmax

0

∫ umax

0
c1κ2dudv

where κ is the principal curvature of the surface and c1 is a mechanical
stiffness parameter. Because his functions were based on the behaviour
of a deforming membrane, they could not maintain tight distance con-
straints between adjacent points, and yield a very stretchy cloth. Under
normal modes, a real draping cloth does not stretch significantly. Feyn-
man’s approach did not take into consideration the shearing behaviour of

.       

cloth, as well as the self intersection with arbitrary solid geometric meth-
ods. Since he assumed that cloth is a membrane, he also introduced a
questionable energy of buckling that attempted to model cloth’s differing
behaviour under compression and extension.

In , D. Baraff and A. Witkin described a simple cloth continuum
model that was motivated more by numerical computing issues than a
desire for mechanical accuracy. They presented a computational frame-
work for producing clothing simulations based on an implicit numerical
integration method. Their approach produced outstanding animation
results while requiring significantly less CPU time. In order to achieve
these short computation times, they formulated a simplified cloth model
that was based on geometric conditions on a triangular mesh and was
straightforward to evaluate. The internal strain energy of the cloth model
was defined as a function of a geometric vector function C(x), which was
used tomaintain soft constraints on inter-vertex distance, shearingwithin
triangles, and bending along triangle edges. The condition was defined
to be zero in its minimal state. They presented several exceptional anima-
tions of cloth draping over a cylinder, and virtual actors wearing clothing
while walking and dancing.

Particle models

In , D.H. House and D.E. Breen developed a non-continuum par-
ticle model that explicitly represents the micro-mechanical structure of
the cloth via and interacting particle system. Their model was based on
the observation that cloth is best described as a mechanism of interact-
ing mechanical parts rather than a continuous substance, and derived its
macro-scale dynamic properties from the micro-mechanical interaction
between threads. Crossing point of warp and weft threads are repre-
sented by particles. These particles interact with adjacent particles and
the environment through mechanical connections represented by energy
functions. A stochastic gradient descent technique was used to relax
the cloth particles toward a final equilibrium position, producing fabric
drape. In , they showed how this model can be used to reproduce the
drape of a scientific materials accurately, but the model produced only
draped configuration without attempting to model cloth motion, and its
original implementation was slow and inefficient.

In following sectionswe elaborate themodels suggested by Baraff and
Witkin, and the model suggested by Breen and House in detail.

    

. Continuum model by Baraff and Witkin for
rapid dynamic simulation

Although specific details vary (underlying representations, numerical so-
lution methods, collision detection and constraint methods, etc.), there is
a deep commonality amongst all the approaches: physically-based cloth
simulation is formulated as a time-varying partial differential equation
which, after discretisation, is numerically solved as an ordinary differen-
tial equation

ẍ = M−1(−∂E
∂x

+ F) (.)

In this equation, the vector x and diagonal matrix M represent the geo-
metric state and mass distribution of the cloth, E–a scalar function of
x–yields the cloth’s internal energy, and F (a function of x and ẋ. ẋ is the
differential of x with respect to time t, and in ẋ the dot gives the number
of times x is differential.)

The simulator models cloth as a triangular mesh of particles. Given
a mesh of n particles, the position in world-space of the ith particle is
xi ∈ R3. The geometric state of all the particles is simply xi ∈ R3n. A
force f ∈ R3n acting on the cloth exerts a force fi on the ith the particle.
We capture the rest state of cloth by assigning each particle an unchanging
coordinate (ui, vi) in the plane.

The most critical forces in the system are the internal cloth forces
which impart much of the cloth’s characteristic behaviour. Breen et. al.
describe the use of the Kawabata system of measurement for realistic
determination of the in-plane shearing and out-of-plane bending forces
in cloth. These two forces are called as shear and bend forces. Shear force
is formulated on a per triangle basis, while the bend force is formulated on
a per edge basis—betweenpairs of adjacent triangles. Stretch force, which
is the strongest internal force, resists in-plane stretching or compression,
and is also formulated per triangle.

Complementing the above three internal forces are three damping
forces. These are used to subdue oscillations due to internal forces. The
damping forces do not dissipate energy due to the other modes of the
cloth. Additional forces include air-drag, gravity, and user-generated
mouse-forces (for interactive simulations). Cloth/cloth contacts generate
strong repulsive linear-spring forces between cloth particles.

Combining all forces into a net force vector f , the acceleration ẍi of
the ith particle is simply ẍi = fi

mi
, where mi is the ith particle’s mass and

in ẍi the dots give the number of times xi is differential of xi, here, wrt
t. The mass mi is determined by summing one third the mass of all
triangles containing the ith particle. (A triangle’s mass is the product

.         
 

of the cloth s density and the triangle s fixed area in the uv coordinate
system.) Defining the diagonal mass matrix M ∈ R3n×3n by diag(M) =
(m1, m1, m1, m2, m2, m2, . . . mn, mn, mn), we can write that

ẍ = M−1 f (x, ẋ) (.)

and we can calculate ẍ iteratively using implicit integration method.

Implicit Integration
Given the known position x(t0) and velocity ẋ(t0) of the system at time
t0, our goal is to determine a new position x(t0 + h) and velocity ẋ(t0 + h)
at time t0 + h. This requires solution of non-linear equation and its input
are x(t0), v(t) = ẋ(t0), f (t0),

∂ f
∂x ,

∂ f
∂v . Essentially, we have to keep track

of x and v, find f and derivatives ∂ f
∂x ,

∂ f
∂v and apply implicit integration.

This gives unbanded sparse linear system which is then solved using
conjugate gradient iterative method.

Forces
We define internal behaviour by formulating a vector condition C(x)
which we want to be zero, and then by defining the associated energy as

Ec = (k/2)C(x)TC(x) (.)

where k is stiffness constant. Thus, force is then defined in terms of energy

fi = −∂Ec

∂xi
= −k

∂C(x)
∂xi

C(x) (.)

We can also calculate the second derivative of f . ∂ f
∂v is zero.

We describe here the main dominating forces in brief.

Stretch -We imagine a continuousmapping functionw(u, v)whichmaps
from rest space (u, v) to D world space. Derivatives of w repre-
sent stretch. Let wu = ∂w

∂u , wv = ∂w
∂v . Magnitude of wu describes

stretch/compression in u direction. If ‖wu‖ = 1, then there is no
stretch. We can approximate w(uv) as linear function over each tri-
angle. So, wu and wv are constant over triangle. We can construct
condition C(x) for stretch energy

C(x) = a
(
‖wu(x)‖ − bu
‖wv(x)‖ − bv

)
(.)

Vector condition C(x) is zero when no stretch occurs. a is area of
triangle (u, v) space. bu = bv = 1.

    

Shear -We can assume lowstretch (‖wu‖, ‖wv‖ ≈ 1). We can assume low
shear (small angle approximately) and construct another condition

C(x) = awx(x)Twv(x) (.)

This is essentially just inner product of world-space u and v axes.

Bend - Given two adjacent triangles, we calculate the angle θ between
them and construct another condition

C(x) = θ (.)

Assuming negligible stretch, we can formulate this as linear equa-
tion of particle positions.

Damping - We define a damping force from C(x)

d = −kd(
∂C(x)

∂x
)Ċ(x) (.)

This is similar to the definition of regular force

f = −ks(
∂C(x)

∂x
)C(x) (.)

We can calculate ∂d
∂x and ∂d

∂v

Thus, wehave got conditionC(x) for stretch and shear of each triangle,
and condition C(x) for bend of each edge. We calculate the derivatives to
get forces and then apply implicit integration.

Constraints
We can also impose constraints on individual cloth particles. The con-
straints wither automatically determined by the user such as geometric
attachment constraints on a particle or contact constraints generated by
the system between a solid object and a particle. At any given step of the
simulation, a cloth particle is either completely unconstrained (though
subject to forces), or the particle may be constrained in either one, two
or three dimensions. If the particle is constrained in all three directions,
thenwe are explicitly setting the particle’s velocity (at the next step). If the
constraint is in two or one dimensions, we are constraining the particle’s
velocity along either two or one mutually orthogonal axes.

.        

Mass Modification
A dynamic simulation usually requires knowledge of the inversemass of
objects. In the case of a single particle, we write ẍi = 1

mi
fi to describe a

particle’s acceleration. When inverse mass is used, it becomes trivial to
enforce constraints by altering the mass.

This describes the physically-based cloth simulation method given
by Baraff and Witkin and its basics like forces and constraints acting
on the particles of the cloth. We here did not elaborate the full paper
nor we describe the modified conjugate gradient method or Collisions or
adaptive time stepping from the original paper Baraff and Witkin [].

. Particle based approach by Breen and House
The particle-based approach to cloth modelling was first applied to the
problem of computing the static drape. A piece of cloth is modelled
as a two-dimensional array of particles conceptually representing the
crossing points of warm and weft yarns in a plain weave. The vari-
ous inter-crossing strain energies are represented with energy functions
parametrised by simple geometric relationships among particles. These
energy functions account for the four basic mechanical interactions of
yarn collision, yarn stretching, out-of-plane bending, and trellising (in-
plane bending) that are show in Figure .. The model does not consider
twisting strain, although it could be easily extended to include this. The
strain energy for crossing particle i is given by

Ui = Urepeli + Ustretchi + Ubendi + Utrellisi .

Urepeli
is an artificial energy of repulsion that effectively keeps every other

particle at aminimumdistance, providing somemeasure of yarn collision
detection, and helping prevent cloth self-interaction. The other three
terms represent true strain energies. Ustretchi captures the energy of tensile
strain between each particle and its four-connected neighbours. Ubendi is
the energy due to yarns bending out of the local plane of the cloth, and
Utrellisi is the energy due to bending around a yarn crossing in the plane.
Repelling and stretching are functions only of interparticle distance rij
(Figure .Ia), whereas bending and trellising are functions of various
angular relationships among segments joining particles (Figure .(IIa
and IIIa). Trellising occurs when yarns are held fast at a crossing and
bend to create an “S-curve” in the local plane of the cloth, and will be
seen macroscopically as shearing.

    

i j

rij

Rij + Sij

σ rija b

(i) Collision and Stretching
a b

θij

iθi1
θi2

θi3

Bij

(ii) Bending

i φij Tij

φijπ/2

a b

(iii) Trellising

F .: Cloth model energy functions

The function Urepeli
prevents collision and self-intersection. so it is

calculated by summing over all particles, as given by

Urepeli
= ∑

j 6=i
R(rij),

In this simulation algorithm, a spatial enumeration is maintained so that
the summation needs to be done only near to the particle i. An energy
well is produced by directly coupling each particle with the stretching
function S only to its four-connected neighbours, as given by

Ustretchi = ∑
j∈Ni

S(rij),

where Ni is the set of particle i’s four connected neighbours.
A unit of the bending energy Bis defined as shown in Figure .(IIb)

as a function of the angle formed by three particles along a weft or warp
“thread line”, as shown in Figure .(IIa). The complete bending energy
is

Ubendi = ∑
j∈Mi

B(θij),

.        

where Mi is the set of six angles θij formed by the segments connecting
particle i and its eight nearest horizontal and vertical neighbours. This
definition is used so that the spatial derivatives of bending energy reflect
the total change in bending energy due to a change in position of particle
i. The redundancy in this formulation is taken care by proper scaling
in later stage of the algorithm. The phenomenon of trellising energy
is diagrammed in Figure . and a corresponding unit of the trellising
energy T is shown in Figure .. Two segments are formed by connecting
the two pairs of neighbouring particles surrounding a central particle.
An equilibrium crossing angle of ◦is assumed, but one could model
slippage by allowing this angle to change, over the course of a simulation,
as a function of load. the trellis angle φ is then defined as the angle
formed as one of the line segments moves away from this equilibrium.
The complete function for the energy of trellising is

Utrellisi = ∑
j∈Ki

T(φij),

where Ki is the set of four trellising angles φij formed around the four-
connected neighbours of particle i. As with bending, this redundant
formulation was chosen so that the change in total energy with change in
particle’s position is completely accounted for locally.

This simulation of this particle-basedmodel takes place in three- phase
process operating over a series of small discrete time steps.

The first phase for a single time step calculates the dynamics of each
particle as if it were falling under gravity in a viscous medium and
accounts for collisions betweenparticles and surrounding geometry.

The second phase performs as energy minimization to enforce interpar-
ticle constraints. A stochastic element of the energy minimization
algorithm serves both to avoid local minima and to perturb the par-
ticle grid, producing a more natural asymptotic final configuration.

The third phase corrects the velocity of each particle to account for
movements of particles during the second phase.

Use of the energy functions havemade this particle-based clothmodel
robust as these energy functions met reasonable boundary conditions,
reaching minima at the right places, and having asymptotes at the right
places.

It is assumed that the yarns in the fabric do not stretch significantly
when a cloth is simply draping under its own weight. Therefore, the
combined stretching and repelling energy function R + S shown in figure

    

Figure .(Ib) provides a steep energy well that acts to constrain each
particle tightly to the normal distance σ from each of its four-connected
neighbours. The energy functions

R(rij) =

{
C0[(σ− rij)5/rij] rij ≤ σ

0 rij > σ,

and

S(rij) =

{
0 rij ≤ σ

C0[((rij − σ)/σ)5] rij > σ,

where C0 is a scale parameter, provide better results.
The bending energy function should be at a minimum with the cloth

completely flat (i.e., when θ = π) and become arbitrarily large when the
cloth bends entirely back on itself (i.e., when θ = 0. The function

B(θij = C1 tan(π − θij/2,

where Ci is a scale parameter, meets these conditions. Likewise, the
trellising energy function should be at a minimum when crossing yarns
are perpendicular to each other (i.e. when φ = π/2). The function

T(φij) = C2tan(φij),

where C2 is a scale parameter, meets these conditions.

 

Representing sari using
computer-generated patterns

Wehavediscussed theproblemof representation of sari in second chapter.
In this chapter, we explain ourmethod to divide the sari symbolically into
fours parts and then use these parts to simulate it on the computer screen.
We then discuss the cloth modelling method suitable for sari simulation.
We also discuss the collision detection problem, which needs special at-
tention from the sari simulation point of view. The books Mortenson
[, ] were useful for understanding the mathematical concepts
in cloth modelling methods. Also the books Foley and van Dam [];
Foley et al. [] were useful to understand the Computer Graphics con-
cepts and the lecture notes Cok [] were very useful to design a system
to represent the sari on computer screen. The lectures notes Stifter [,
] were useful for devising a strategy for our work.

. Symbolic representation of sari
To model a sari, we should know how a sari is created? What kind of
structure the fabric of the sari has? How its design patterns are created?
How this affects the appearance and behaviour, like at the creases and
folds, or when it is draped over a body? How can the variety of draping
styles of the sari be simulated on computer screen? There are many such
questions and so we break the main sari simulation problems in small
parts. Let us first concentrate on how a sari is created.

A sari is a rectangular, un-stitched piece of fabric, woven using cotton,
silk or other threads, usually five meters long in length and around one
to one and half meters in width, usually having designed length-wise
borders and one breadth-wise designed end of the sari. Figure . shows
a plain sari hanging from a cloth-line. Here, we can see all symbolic parts



      - 

F .: Sari with all its symbolic parts

F .: Banarasi Sari

of sari. This sari is made up of Crape material, taken from the web site
Ananda.

See the difference between texture in the above sari and the Paithani
shown in the Figure ..

We want to see sari as plain sheet of the fabric too. Picture of a full-
length, that is, at least five meters long sari will be uninteresting as it will
not reveal any detailed information. So we have to decide how a sari can
represented so that it will show all the necessary details. Figure . shows
sari in its rest position, that is at a flat angle. Figure . shows the Padar
of the sari, in more detailed form. Figure . shows the Kath of the sari.
Note that this sari has very small and plain Kath.

In second chapter, we explained a sari, using its symbolic parts.
Though, it is an un-stitched fabric, for the sake of clarification, we differ-
entiated it in its four visual parts, symbolically. A sari follows a definite
pattern of designs. Irrespective of its material, whether it cotton or silk
or made up of using any synthetic threads, or weaving styles, or any
traditional design patterns, every sari has definite pattern of designs. In
all the variety of the saris, there is a fixed set of patterns, let us call them
parameters. We identify the parameters, common to all saris, and which

.     

F .: Sari

parameters which change with the sari.
A sari consists of Ang. This is common parameter in every sari. This is

sort of basic fabric of the sari. This is present in every sari and the texture
of the threads used for weaving and the colour(s) define the plain sari.
Here all the other visual parts, like Kath or Padar are absent. The Ang can
be plain or it can have any design, created while weaving.

A sari can have lower Kath only, or it can have both. A sari will not
have upper Kath if it does not have lower Kath. The saris like Paithani have
upper Kath but since this upper Kath is tucked inside the petticoat and is
not visible when the sari is worn, many saris do not have the upper Kath.
It is more for sake of completion of the design.

Most beautiful and prominently visible part of the sari is its Padar. A
sari can have only Padar or it can appear with the lower Kath, or with both
of them.

We created similar textures of the symbolic parts of the above sari,
using GIMP, version .. Then we fixed the proportion of these parts
of the sari. We then used texture mapping to generate a sari with all
possibilities of combination of Ang, Kath and Padar. Figure . shows the
texture of the Ang of the sari, Figure . shows the Padar and Figure .

      - 

F .: Padar of the sari

shows the Kath of the sari. We used these textures and generated a sari on
a computer screen, please see Figure ..

The pictures of the saris used here are from our personal collection,
and also from theweb sites Ananda; Banarasi Saree; IndiCraft; Sari Safari;
Tourism of India.

. Problems related to sari simulation
We discussed different approaches for cloth modelling in previous chap-
ter. Here, let us discuss the cloth modelling methods particularly for
modelling of the sari.

Whenwe take a sari in our hands orwear it, it feels different. The same
sari with different folding looks different, or even it looks different when
worn by different persons. There is no rule how it should look, actually,
this is true with any kind of clothing but it is especially true with saris
as sari comes in same size and shape for any person unlike the stitched
garments which are prepared according to the body measurements of
the wearer. So if it looks right to our eyes then it is right. Thus, if the

.      

F .: Kath of the sari

behaviour of the sari we modelled is same or almost same as of the real
one, then we have right model. Now the questions arise like what we
exactlywish. We sometimes need the sari draped over a body. Sometimes
we might need only main parts of the sari like Padar, Kath and Ang. We
might need just to see if the sari is hung from some point then how its
creases will look like. In short, sometimes, we will need the exact model
of the sari,

In cloth modelling, the phenomenon under consideration are funda-
mentally chaotic. Each time one puts on a shirt or drapes a tablecloth,
many of its details look different. Given this fact, the computer graphics
dictum “if it looks right it is right” seems somehow to be a very powerful
one. How can an engineer know if a model of cloth is correct? Our
answer from computer graphics would be to visualize its performance
and compare results with those obtained with real cloth. The criteria for
comparison, at least at the first level of analysis, can and should be visual.
does it drape like the real material? Does it move like the real mater-
ial? Then at some fundamental level, the model is likely to be a correct
description of the material. The point of view seems first to be largely
antithetical to the point of view required by an engineer, responsible for

      - 

F .: Ang of the sari.

design. However, it does not preclude deeper investigations but sim-
ply supplements it with an approach that taps directly into the immense
power of human brain and visual system to extract patterns from visual
phenomena.

To simulate a sari, we first have to decide a suitable model. We give a
brief overview of models suggested so far since the beginning of this re-
search field, with detailed description of the continuummodel suggested
by Baraff andWitkin [] and the particle model suggest by House and
Breen []. The first model, suggested by Baraff and Witkin [], is
best suitable for the dynamic simulation of cloth, with compromising the
mechanical accuracy. This model is helpful mainly when the numerical
computing issues are more important then the accurate simulation of the
cloth. The second model, suggested by Baraff and Witkin [], is non-
continuum particle model for cloth drape that explicitly represents the

.      

F .: Padar of the sari.

F .: Kath of the sari.

      - 

F .: Sari generated using its symbolic parts.

micro-mechanical structure of the cloth via an interacting particle system.
The particle model can be used to reproduce the drape of a specific ma-
terial accurately, although it can produce only the draped configuration
and not the cloth motion. The later variations of this method are faster
and more efficient than the original version but this method is not that
fast enough. For sari, we need a model which can produce a scientifically
accurate simulation of cloth, that is in our interest, sari, in real-time, or
nearest to it.

Saris are of various materials, like cotton, silk, or even synthetic
threads. They are either woven or knitted, depending upon the type
and the tradition of that sari, for example, Paithani, is woven with silk
threads and Jar while the printed cotton saris are knitted with variety
of different coloured threads, sometimes even synthetic threads are also
used. Thus, to generate a sari, accurate visualization of the underlying
yarn is very important. This holds true for the woven fabrics but it is
especially true for knitted fabrics, where the individual yarns and the
yarn-loops contribute significantly to the overall appearance. Without
considering the fibres and the structure of the material, realistic-looking
close-up images cannot be generated. Thus, the modelling of the fine and
highly detailed structures of yarn and its fibres is a very challenging task.

.      

Thus, to select a suitable model for sari simulation comes to selecting a
suitable model for lengthy woven or knitted fabric.

.. A volumetric appearance model proposed by
Meissner, Eberhardt and Strasser

The requirements for woven as well as knitted fabrics are very different,
hence we have to consider the constraints and the target application of
the fabrics carefully. Here, we describe a volumetric appearance model
suggested by Meissner, Eberhardt and Strasser, House and Breen [].
While woven fabrics are usual made using a regular weave structure,
knitted fabrics can consist of simple up to very complex knitting patterns.
The more complex the patterns are, the more effort has to be spent to
model the fabric correctly. Both the complexity of the fabric and the
required level of detail of the yarn determine the necessary computations.
Depending on the level of the detail required, it might be possible to use
a simple yarn representation like a tube, or it might be necessary to go to
a more detailed volumetric representation.

Saris, may woven or knitted, follow a repetitive structure of patterns.
For example, traditional saris, like Paithani or Banarasi Sari are well known
for their traditional designs of peacock or objects likeKoyari. Or the printed
saris have block prints, where the blocks are printed linearly on the basic
fabric of the sari, using same or different colours. Here, we discuss why
and how the volumetric appearance model will be suitable for the sari
simulation. We use the terminology used by the authors, that is, we stick
to the woven fabrics and knitted fabrics.

Simple knitted fabric patterns Simple knitted fabric patterns are in
principle made up of only two types of loops, R-loops, or plain stitch, and
L-loop, or reverse stitch, and therefore have a highly repetitive structure.
In order to generate a realistic appearance of such knitwear, it is necessary
to model the detailed structure. Simple texture mapping could be used
but it is limited to a surface representation, while knitwear has a three di-
mensional structure that influences its appearance. Furthermore, the very
fine details of the yarns, including hairiness, have volumetric properties
that can only be partially captured using two dimensional textures. To
achieve an accurate appearance, Meissner, Eberhardt and Strasser, House
and Breen [], used volumetric models of the yarns that take advan-
tage of repetitiveness by generating only a small portion of the cloth, that
is, a module, which then can be patched together repeatedly. This will be
especially useful for the sari, as we can find the repetitive pattern of the

      - 

designs in Kath and Padar and then patch them together, along the length
and width of the fabric of the sari, as per the sari’s type.

Unlike woven textiles, which consist of interlacing weft and warp
yarns, knits are constructed by interleaving of loops. The differences
between these fabric types are clearly seen in the two samples in New
combinations of these loops can produce an almost infinite variety of de-
signs. Knitted fabrics also drape differently fromwoven textiles, allowing
for the creation of endless new looks. These design considerations, along
with the wide variety of knitting modules available, make knits vital to
the textile industry. Also, the specific problems for knitted materials are
much more complex than for woven materials and are, therefore, a more
general model of textiles. Finally, the micro-structure of knitted fabrics is
a rather pronounced three dimensional micro-shape.

To begin with, we first have to construct a pattern of the knitted fabric,
row by row, with each row consisting of a series of consecutive loops. To
construct these loops, for each loop of the previous row a new loop on the
current row is built by pulling the knitting yarn through the loop of the
previously knitted row. This is either done from front-to-back, or L-loop,
or back-to-front, or R-loop, as shown in Note that the type of loop is view
dependent definition, the front view of an R-loop is the back view of an
L-loop and vice-versa.

The knit pattern are given by the geometry of the thread structure
and an abstract representation. This abstract representation tells us how
R-loops and L-loops are combined together in the knit pattern. The basic
elements needed for to model the simple patterns of knitted fabrics are
fairly small while the more general knitting patterns are specified by an
arbitrary arrangement of R-loops and L-loops, and there are many more
knitting patterns that consist of more than two types of loops.

Due to the repetitive structure of patterns, a fabric can be subdivided
into basic elements that repeat across the fabric. To describe any pattern,
one basic element has to be generated for each kind of loop, these elements
are then patched together to generate a larger representation. Thus,
modelling a knitted fabric pattern is reduced to modelling the structure
of knitting yarns within the basic elements. In a subsequent step, the
knitted fabric pattern can then be synthesized from these basic elements
by taking into account various boundary conditions thatmust be fulfilled.

The location of the knitting yarn within a basic element is define by
four components C1, C2, C3, C4 of a parametrised 3D skeleton curve C(t)
The fourpieces together define a single knitting loopandareparametrised
as indicated in the A curve-length parametrisation is done such that the
following conditions hold:

C(ti) = pi, t0 = 0, t1 = t2, t3 = 0.5, t4 = t5, t6 = 1.0, with ti ≤ ti+1. (.)

.      

The parametrisation of the skeleton curve affects the properties of the
yarn structure, for example, twisting behaviour, and must be chosen to
ensure continuous transitions of the yarn and its micro-structure between
adjacent basic elements. The skeleton curve C has various symmetry
characteristics: C1 is basically a rotated version of c2 and c3 is a rotated
version of C4. Reflecting C2 through a plane parallel to the yz-plane
produces C3. The same holds for C1 and C4. Furthermore, the skeleton
curve of a R-loop is the same as the reflection (through xy-plane) of the
skeleton curve of an L-loop. The skeleton curve C determines the location
of the thread course.

Modelling of the yarn Micro-structure Knitting yarn typically consists
of a large number of thin fibres. A fibre may be of different materials
like wool, cotton, silk, or nylon and it has a much greater length than
thickness.

For realistic representation of knitted fabrics, an approach is described
by emphasizing their rendering in detail. The yarn micro-structure is
modelled as D-data to allow a close-up inspection of the model. Other
cloth shading models found in the literature are based on D texture
mapping to create a textile look. Typically this technique is based on
scanning real textilematerials and applying the scanned images as texture
maps.

Knitting yarn has a fine micro-structure, where single fibres are not
perceivable by themselves, but provide an important contribution to the
overall visual impression of the yarn structure. Rendering primitives
are volume densities with anisotropic lighting behaviour. Instead of an
explicit representation of individual yarns, volume data sets are used to
represent collections of fibres simultaneously. Rendering time is therefore
independent from the geometric complexity of the yarn structure.

A yarn has a complex micro-structure due to the large number of thin
constituent fibres. As the diameter of a single fibre is merely micrometers
in width, it has a very low opacity and is not perceivable individually.
Only the collection of fibres and their spatial arrangement determines the
visual impression of a yarn. A geometric model with the representation
of each single fibre was considered to be too costly and unnecessarily
detailed for the generation of the visual appearance the yarn structure.
Additionally, severe aliasing problems must be expected when using a
geometric model for representing the micro-structure of knitting yarn.

In light of these considerations, the yarn is modelled as a volume data
set. A density value thereby reflects the frequency of fibres in a certain
region of a basic element which makes up a knitted fabric. The volume
data of a basic element is generated by specifying a D cross-section of a

      - 

knitting yarn. This cross-section is swept along the skeleton curve, and
one or more rotations produce the twisted shape of the yarn. Density
values correspond to fibre frequency, i.e., high density values correspond
to locations with a large number of fibres. A yarn cross-section usually
consists of one or more circular regions of high density where most of the
fibres are located. Density values drop off at the boundary of the circular
regions due to the fact that fibres are less numerous in these regions.
Scattered spots of high density correspond to fibres or bundles of fibres
which are detached from the main strand of the yarn. They are essential
for the fleecy and soft appearance of a knitting yarn.

These yarn cross-sections are swept and rotated along the earlier de-
termined polygonal lines of the threads. By blending together these
cross-sections the final volume of the knitting pattern is obtained. For
rendering, one may use direct volume visualization.

.. Volumetric approach for sari simulation
We saw that sari is knitted or woven fabric, made up of from variety of
materials and worn around the body in layers. To achieve the realistic
sari simulationwe need very realistic and high-quality images of sari. We
suggest that the volumetric approachdescribed abovewill be best suitable
for it. Since, saris are designed with repetition of some pattern and their
distinct looks are because of the yarns used for the weaving, or knitting,
the volumetric approach will be best suited for the sari simulation.

We used the polygonal surfaces and texture mapping methods to
generate the sari but this approach has limitations. This texture mapping
method does not incorporate the underlying detailed structure of fibres.
This ismainly because of the interaction of light being strongly dependent
on yarn and fibres that absorb light depending on the density distribution
of the fibres. Using polygon texture-mapping and local illumination
properties (per triangle based), this could only be simulated in a very
limited way, since material properties vary from yarn to yarn depending
on the material used and the applied knitting pattern. In contrast, a
volumetric approach reveals the three-dimensional structure of knitting,
especially if one looks at a knitted fabric at a very flat angle. This will in
fact help to depict the sari better in its static form, that is before it is worn.

We have described the generation of volumetric models from basic
elements of single yarn-loops forming a regular knitting pattern.This ap-
proach can be extended with complex patterns with enriched designed
saris, like Paithani.Extending the above concept to more complex patterns
can be accomplished with a closer look at the basic elements. More com-
plicated knitting patterns are a combination of basic elements and usually
consist of more than one or two basic yarn loops extending over several

.      

rows. An example of such a larger basic elements is a cable, where yarn
loops cross each other and, hence, only the entire cable can be used as a
basic element, which can then again be repetitively fit together if neces-
sary. The D curve of the yarns for such a basicmodule needs to be known
before the technique described here can be applied. Thus, to generate a
sari using its symbolic parts, as explained in previous section, we can use
this volumetric approach provided we have the detailed description of
the underlying structure of the yarns and fibres of the fabric of the sari.

.. Collision Detection
In the second chapter, we described the steps to drape a sari. The sari
wearing consists of draping it over the body, in a respective style, in sev-
eral layers. From simulation point of view, it causes a bottleneck problem,
that is of collision—collision of the fabric with the three dimensional sur-
face resembling the human body and the self-intersection, that is collision
of the cloth particles from one layer of fabric to another layer of the fabric.
Because of layers, self-collision of cloth particles is a very important issue.
The collision with other surface than the cloth itself, is the body around
which the sari is draped. Cloth collision and detection is very important
issue for cloth modelling and simulation research area. House and Breen
[] gives a detailed summary of available methods for this.

The problem of collision detection is quite difficult due to the complex
configuration that limp cloth fabric can fall into, making the issue of self
collision one that cannot be ignored for any practical animation applica-
tion. In , Volino, Courchesne and Magnenat Thalman presented an
algorithm that deals efficiently with this and other collision detection and
response issues. Self intersection calculation is made tractable through
the use of a hierarchical algorithmutilizing surface curvature. Calculation
times resulting from the use of this algorithm are roughly proportional
to the number of colliding elements and independent of the total number
of elements in the surface. Collision consistency, which is the problem
of keeping all the elements of a complex surface on the appropriate side
of another complex surface during collision response, is handled with
heuristics and a history mechanism.

 

Applications

Sari simulation have many interesting applications. We will list them
here. First is in e-Commerce. The web shops like Ananda can use the our
programs like and their sari patterns and generate the saris on screen. For
example, in kolkata saris, the user can choose from various coloured Ang
for sari and the Kath and Padar and see how it looks like together. Keeping
photos of each such combination will take lot of space and also the web
pages will need more time to load. In our system, one can choose from
available options and then select his choice of sari. Also he can see how it
will look like when it is worn, or when it is hanging from a cloth-line and
showing folds and creases showing colour changes at plaits and Padar.
Here, we have shown only one sari but we can create many textures and
provide them to the user and see how he likes it.

Animated figures, like characters in animation films, need clothing.
Most of the animated characters wear the skin-tight clothes like shirts or
skirts. The sari, Indian traditional wear for women is quiet different. It
is worn around the body with some other under garments. So these kind
of non-skin-tight clothing moves independently of the wearer. These
depicts complicated movement with many wrinkles and creases. Indian
culture getting popular worldwide and more animation films are created
based on those stories, we will need the Indian clothing for them. Thus,
sari simulation will indeed help to attract worldwide viewers to Indian
animation films.

Computer games is another good candidate which will help from the
sari simulation research. The strategic games, like based on stories like
Harry Potter, need long robes flowing over the body. The more realistic
looks surely add to joy of playing the game.

Textile industry is the most important field which will benefit from
sari simulation results. India has a great tradition of various saris. Every
state, even different towns have different designs of saris and different
draping styles. Also the new development in textile industries give rise



   

to new varieties, for example, the new printing technology allows to have
same design as any Bandhani sari will have without its creases and on any
synthetic material. The more traditional and luxurious saris like Paithani
or Baluchary saris are a national treasure.

Bibliography

d StudioMax. D graphics and animation software. http://www.3dmax.
com.

Ananda. An exclusive boutique of saris in Kolkata, West Bengal, India.
http://www.anandacal.com/products/products.htm/.

Manasi Athale and Sabine Stifter. Survey Report on Texture Mapping. Tech-
nical Report -, Research Institute for Symbolic Computation, Jo-
hannes Kepler University, Linz, Austria, . The report is electroni-
cally available as ftp://ftp.risc.uni-linz.ac.at/pub/techreports/
2001/01-21.ps.gz.

P. N. Azariadis and N. A. Aspragathos. On using planar developments to
perform texture mapping on arbitrarily curved surfaces. Computer and
Graphics, : –, .

Banarasi Saree. Online shopof banarasi saris. http://www.banarasisaree.
com/.

D. Baraff and A. Witkin. Large Steps in Cloth Simulation. In SIG-
GRAPH’, Computer Graphics Proceedings, Annual Conference Series,
pages –. . The article is available electronically as http:
//www-2.cs.cmu.edu/~baraff/papers/sig98.pdf.

Ingmar Bitter. Texture Mapping. Seminar on D Graphics Hardware,
Experimental Computer Systems Lab, Stony Brook University, USA,
. The article is electronically available as http://www.ecsl.cs.
sunysb.edu/cse659/tm.html.

Boost. Web site providing free peer-reviewed portable C++ source li-
braries. http://www.boost.org/.

Chantal Boulanger. http://www.devi.net/shakti/sari/. This website
provides a valuable information on sari wearing styles.



 

K. Cok. Developing Efficient Graphics Software: The Yin and Yang of
Graphics. SIGGRAPH  Course Notes, .

CorelDraw. An image manipulation program. http://www.corel.com/.

S. Fang and H. Chen. Hardware Accelerated Voxelization. Computer and
Graphics, : –, .

M. Firebaugh. ComputerGraphics. LectureNotes, CSci . The notes are
available electronically as http://www.uwp.edu/academic/computer.
science/Faculty/firebaugh.www/LectIndex320.html.

J. D. Foley and A. van Dam. Fundamentals of Interactive Computer Graphics.
Addison Wesley, .

J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, and R. L. Phillips.
Introduction to Computer Graphics. Addison Wesley, .

FreeCloth. A free, open-source cloth simulation tool. http://freecloth.
enigmati.ca.

D. Gelb, T. Malzbender, and K. Wu. Polynomial Texture Maps. Hewlett
Packard Laboratories, April .

D. Gelb, T. Malzbender, and K. Wu. Light-Dependent Texture Mapping.
Hewlett Packard Laboratories, April .

G. K. Ghosh and Shukla Ghosh. https://www.vedamsbooks.com/11322.
htm/.

GIMP. GNU Image Manipulation Program. http://www.gimp.org/.

P. Haeberli and M. Segal. Texture Mapping as a Fundamental Draw-
ing Primitive, June . The article is electronically available as
http://www.sgi.com/misc/grafica/texmap/. Also part of the Graph-
ica Obscura web site http://www.sgi.com/misc/grafica/.

P. Heckbert. Survey of Texture Mapping. IEEE Computer Graphics and
Applications, November . The article is electronically available from
the author’s web site http://www-2.cs.cmu.edu/~ph/.

P. Heckbert. Fundamentals of texture mapping and image warping. Master’s
thesis, University of California, Berkeley, . Available electronically
as http://www-2.cs.cmu.edu/~ph/texfund/texfund.pdf.

D. H. House and D. E. Breen, editors. Cloth Modeling and Animation. A. K.
Peters, Ltd., .



ImageMagic. A free image manipulation software. http://www.
imagemagic.org/.

IndiCraft. Exclusive India Handicrafts Store. http://www.india-crafts.
com/textile_products/index.html.

P. S. Karthikeyan and P. S. Ranganathan. Tutorial on Cloth Modelling.
The article is electronically available as http://www.geocities.com/
SiliconValley/Heights/5445/cloth.html.

LAPACK. Linear Algebra PACKage. http://www.netlib.org/lapack/.

Maya. A D and D graphics and animation software. http://www.
aliaswavefront.com/maya/.

H. Mayr. Virtual Environments: Design, Modeling, Visualization and
Simulation. Lecture Notes, Johannes Kepler Universität, -.

Mesa. A D Graphics Library. http://www.mesa3d.org/.

MIRALab. http://miralabwww.unige.ch.

M. E. Mortenson. Geomwtric Modeling. John Wiley & Sons Inc., second
edition, .

M. E. Mortenson. Mathematics for Computer Graphics Applications. Indus-
trial Press, Inc., second edition, .

MTL. Matrix Template Library. http://www.osl.iu.edu/research/mtl/.

OpenGL Blue Book. OpenGL Reference Manual. Reading, MA:
Addison-Wesley Developers Press, . The book is available elec-
tronically as http://www.parallab.uib.no/SGI_bookshelves/SGI_
Developer/books/OpenGL_RM/sgi_html/bk02.html.

OpenGL Red Book. OpenGL Programming Guide. First
printing, January . The book is available electronically
as http://www.parallab.uib.no/SGI_bookshelves/SGI_Developer/
books/OpenGL_PG/sgi_html/ch01.html.

D. Pritchard. Implementing Baraff & Witkin’s Cloth Simulation. The
article is electronically available as http://freecloth.enigmati.ca/
docs/report-chaps/.

X. Provot. Deformation Constraints in a Mass-Spring Model to De-
scribe Rigid Cloth Behavior. The article is electronically avail-
able as http://graphics.stanford.edu/courses/cs468-02-winter/
Papers/Rigidcloth.pdf.

 

Sari Safari. Online sari shop. http://www.sarisafari.com/.

Shalincraft India. Online sari shop. http://www.shalincraft-india.
com/subhome/saree.html/.

SimCloth. A simple cloth plugin for D Studio MAX. http://www.
chaosgroup.com/software/software.html.

Sabine Stifter. Geometric Foundations for Symbolic computations. Lec-
ture Notes, Research Institute for Simbolic Computation, Johannes Ke-
pler Universität, .

Sabine Stifter. Geometric Modelling. Lecture Notes, Research Institute
for Simbolic Computation, Johannes Kepler Universität, .

Tourism of India. http://www.tourismofindia.com/exi/sari.htm/.

uBLAS. C++ template class library that provides BLAS (Basic Linear
Algebra Subprograms) level , ,  functionality for dense, packed and
sparse matrices. http://www.genesys-e.org/ublas/.

